Distributions

Return home

Distribution PMF\((k)\)/PDF\((x)\) Mean Variance
\(\mbox{Geom}(p)\) \((1-p)^{k-1}p\) \(\frac{1}{p}\) \(\frac{1-p}{p^2}\)
\(\mbox{Bin}(n, p)\) \(\binom{n}{k}p^{k}(1-p)^{n-k}\) \(np\) \(np(1-p)\)
\(\mbox{Exp}(\lambda)\) \(\lambda e^{-\lambda x}\) \(\frac{1}{\lambda}\) \(\frac{1}{\lambda^2}\)
\(\mbox{Poisson}(\lambda)\) \(\frac{\lambda^{k}e^{-\lambda}}{k!}\) \(\lambda\) \(\lambda\)
\(\mbox{Gamma}(n, \lambda)\) \(\frac{x^{n-1}e^{-\lambda x}\lambda^{n}}{(n-1)!}\) \(\frac{n}{\lambda}\) \(\frac{n}{\lambda^2}\)

To analytically compute the expectations above, it is useful to recall the following sums/series:

\[\begin{align} \frac{1-x^{n+1}}{1-x} &= \sum_{k=0}^{n} x^{k} \\ (x + y)^{n} &= \sum_{k=0}^{n} \binom{n}{k}x^{k}y^{n-k} \\ e^x &= \sum_{k=0}^{\infty} \frac{x^{k}}{k!} \end{align}\]

Expectation

Let \(X\) be a random variable over state space \(\Omega\). If \(X\) is discrete, then the expectation is

\[EX = \sum_{x\in\Omega} xP(X = x).\]

If \(X\) is continuous and \(\Omega\subseteq\mathbb{R}\), then the expectation is

\[EX = \int_{-\infty}^{\infty} x f_X(x) dx.\]

Recall that the probability density function is defined as \(f_X(x) := \frac{d}{dx} P(X\leq x)\). If \(\Omega\) is bounded below by \(a\in\mathbb{R}\), then we can alternatively compute expectation as the following:

\[EX = \int_{0}^{\infty} (1 - P(X\leq x)) dx.\]

Remark. This can shown by expressing the integrand as another integral and changing the order of integration.

Binomial Distribution

The binomial distribution is equivalent to the distribution of a sum of independent Bernouli random variables. Thus,

\[\mbox{Bin}(n, p) + \mbox{Bin}(m, p) = \mbox{Bin}(n + m, p).\]

Exponential Distribution

Let \(X\sim \mbox{Exp}(\lambda)\), \(Y\sim \mbox{Exp}(\mu)\), \(\lambda, \mu > 0\). Then, the following properties hold: