Distribution | PMF\((k)\)/PDF\((x)\) | Mean | Variance |
---|---|---|---|
\(\mbox{Geom}(p)\) | \((1-p)^{k-1}p\) | \(\frac{1}{p}\) | \(\frac{1-p}{p^2}\) |
\(\mbox{Bin}(n, p)\) | \(\binom{n}{k}p^{k}(1-p)^{n-k}\) | \(np\) | \(np(1-p)\) |
\(\mbox{Exp}(\lambda)\) | \(\lambda e^{-\lambda x}\) | \(\frac{1}{\lambda}\) | \(\frac{1}{\lambda^2}\) |
\(\mbox{Poisson}(\lambda)\) | \(\frac{\lambda^{k}e^{-\lambda}}{k!}\) | \(\lambda\) | \(\lambda\) |
\(\mbox{Gamma}(n, \lambda)\) | \(\frac{x^{n-1}e^{-\lambda x}\lambda^{n}}{(n-1)!}\) | \(\frac{n}{\lambda}\) | \(\frac{n}{\lambda^2}\) |
To analytically compute the expectations above, it is useful to recall the following sums/series:
\[\begin{align} \frac{1-x^{n+1}}{1-x} &= \sum_{k=0}^{n} x^{k} \\ (x + y)^{n} &= \sum_{k=0}^{n} \binom{n}{k}x^{k}y^{n-k} \\ e^x &= \sum_{k=0}^{\infty} \frac{x^{k}}{k!} \end{align}\]
Let \(X\) be a random variable over state space \(\Omega\). If \(X\) is discrete, then the expectation is
\[EX = \sum_{x\in\Omega} xP(X = x).\]
If \(X\) is continuous and \(\Omega\subseteq\mathbb{R}\), then the expectation is
\[EX = \int_{-\infty}^{\infty} x f_X(x) dx.\]
Recall that the probability density function is defined as \(f_X(x) := \frac{d}{dx} P(X\leq x)\). If \(\Omega\) is bounded below by \(a\in\mathbb{R}\), then we can alternatively compute expectation as the following:
\[EX = \int_{0}^{\infty} (1 - P(X\leq x)) dx.\]
Remark. This can shown by expressing the integrand as another integral and changing the order of integration.
The binomial distribution is equivalent to the distribution of a sum of independent Bernouli random variables. Thus,
\[\mbox{Bin}(n, p) + \mbox{Bin}(m, p) = \mbox{Bin}(n + m, p).\]
Let \(X\sim \mbox{Exp}(\lambda)\), \(Y\sim \mbox{Exp}(\mu)\), \(\lambda, \mu > 0\). Then, the following properties hold: