
MATH 303 Review Sheet: 

General 

Probability rules 

Total Law of Probability: 

𝑝(𝑥) =∑𝑝(𝑥, 𝑦)

𝑦

= ∑𝑝(𝑥| 𝑦)

𝑦

∗ 𝑝(𝑦) 

Conditional Expectation: 

𝐸(𝑋) =  ∑𝐸(𝑋|𝑌) ∗ 𝑝(𝑌)

𝑦

 

Notes on some useful distributions: 

1. If 𝑋 ~ 𝐵𝑖𝑛𝑜𝑚(𝑛, 𝑝), then 𝐸(𝑋) = 𝑛𝑝  , 𝑉𝑎𝑟(𝑋) = 𝑛𝑝(1 − 𝑝), 𝑓(𝑥) = (
𝑛
𝑥
) (𝑝)𝑥(1 − 𝑝)𝑛−𝑥 

2. If 𝑋 ~ 𝐺𝑒𝑜𝑚1(𝜋), then 𝑓(𝑥) = (1 − 𝜋)𝑥𝜋, 𝐸(𝑥) =
1−𝜋

𝜋
, 𝑉𝑎𝑟(𝑥) =

1−𝜋

𝜋2
 

3. If 𝑋~𝐺𝑒𝑜𝑚0(𝜋), then 𝑓(𝑥) = (1 − 𝜋)𝑥−1𝜋, 𝐸(𝑥) =
1

𝜋
, 𝑉𝑎𝑟(𝑥) =

1−𝜋

𝜋2
 

 

Geometric Series: 

∑ 𝑎𝑟𝑘
∞

𝑘=0
=

𝑎

1 − 𝑟
 

 

Binomial Theorem: 

∑(
𝑛
𝑘
)

𝑛

𝑘=0

𝑥𝑘𝑦𝑛−𝑘 = (𝑥 + 𝑦)𝑛 

Markov Property For all 𝑛 ∈ Ν & 𝑋𝑖  ∈ 𝑆, 𝑋𝑛, 𝑛 ≥ 0 is a Markov Chain when it satisfies: 

𝑝(𝑋𝑛+1 = 𝑥𝑛+1|𝑋0 = 𝑥0, … . , 𝑋𝑛 = 𝑥𝑛) = 𝑝(𝑋𝑛+1 = 𝑥𝑛+1| 𝑋𝑛 = 𝑥𝑛) 
 

Literally, the next state only depends on the current state. 

 

Homogeneous 

Markov Chain 
For all 𝑥 , 𝑦 ∈ 𝑆, a homogeneous Markov Chain should have 𝑝(𝑋𝑛+1 = 𝑦 |𝑋𝑛 = 𝑥) being the same for all states. 

 

For Homogenous MC: 𝐸(𝑋𝑛+𝑠| 𝑋𝑠 = 𝑖) = 𝐸(𝑋𝑛 | 𝑋0 = 𝑖),  𝐸(𝑋𝑛| 𝑋0 = 𝑗, 𝑋𝑖 = 𝑖) = 𝐸(𝑋𝑛−1 | 𝑋0 = 𝑖) 
 

Chapman-

Kolmogorov 

equation 

𝑝𝑖,𝑗
𝑚+𝑛 = ∑𝑝𝑖,𝑘

𝑚 ∗ 𝑝𝑘,𝑗
𝑛

𝑘

 

n-step transition matrix: �̃�(𝑛) = �̃�𝑛 

 

Accessibility & 

Communication 
1. Accessible: 𝑆𝑗 is accessible from 𝑆𝑖 if there exists 𝑛 𝜖 𝑁 such that 𝑝𝑖𝑗

𝑛 > 0. 

 

2. Communicate: 𝑆𝑗 communicates with 𝑆𝑖 if 𝑆𝑖 is accessible from 𝑆𝑗 & 𝑆𝑗 is accessible from 𝑆𝑖. 

     - Communication is an equivalent relationship (reflexive: 𝑆𝑖 communicate with itself, transitive, symmetric) 

     - All communicating classes partition the state space 𝑆. 

     - For an irreducible MC, there is only 1 recurrent communicating class.  

 

Period of States Period of States 𝑑(𝑖): greatest common divisor of 𝑛 ∈ 𝑁, 𝑝𝑖,𝑖
𝑛 > 0. 

- All States of the same communicating class share the same period (class property) 

Aperiodic: a state or MC has a period of 1.  

 

Recurrence & 

Transience 
Let 𝑓𝑖 = 𝑝(𝑋𝑛 = 𝑖, 𝑛 ≥ 1, 𝑛 ∈ 𝑁 | 𝑋0 = 𝑖) (probability of return to state i if started from state i): 

1. If state i is recurrent, then we have: 𝑓𝑖 = 1 

2. If state i is transient, we have 𝑓𝑖 < 1 

 

Proposition: Transience & Recurrence are class properties.  

 

Proposition: for an irreducible, finite MC, the MC is recurrent 

 

Number of 

Returns (Visits) 

 

Matrix Inverse: 

Let 𝑁𝑖 = # (𝑛 ≥ 0:𝑋𝑛 = 𝑖)  ∪ ∞, 𝑁𝑖 denotes to number of visits to state 𝑖. 
 

If 𝑖 is recurrent, we have: 



[
𝑎 𝑏
𝑐 𝑑

]
−1

=

1

𝑎𝑑−𝑏𝑐
[
𝑑 −𝑏
−𝑐 𝑎

]. 

 

�̃�𝑇: transition 

matrix for all 

transient states.  

{
 
 

 
 

𝑝(𝑁𝑖 =  ∞ | 𝑋0 = 𝑖) = 1

𝐸(𝑁𝑖|𝑋0 = 𝑖) =  ∑ 𝑝𝑖,𝑖
𝑛

∞

𝑛=0

= 1

𝑠𝑎𝑚𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑠𝑡𝑎𝑡𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝐶𝑖 𝑤𝑖𝑡ℎ 𝑖 

 

 

If 𝑖 is transient, we have: 

{
 
 

 
 𝐸(𝑁𝑖|𝑋0 = 𝑖) =  ∑𝑝𝑖,𝑖

𝑛

∞

𝑛=0

=
1

1 − 𝑓𝑖
 < ∞ 

𝑓𝑖 < 1
𝑠𝑎𝑚𝑒 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟 𝑠𝑡𝑎𝑡𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝐶𝑖

 

 

𝑆𝑖,𝑗: mean Time (Number of Visits) to Transient state 𝑗 starting from state 𝑖 

𝑆𝑖𝑗 = 𝐸(𝑁𝑗|𝑋0 = 𝑖) = [(𝐼𝑛 − 𝑃�̃�)
−1
]
𝑖𝑗

 

Closedness A communicating Class is closed if all 𝑖 ∈ 𝐶 & 𝑗 ∉ 𝐶, 𝑝𝑖𝑗 = 0. 

Proposition: Finite, closed communication class is recurrent; communication class not closed is always transient. 

 

Stirling 

Approximation 
Stirling Approximation: 𝑛!  ~  √2𝜋𝑛 (

𝑛

𝑒
)
𝑛

 

 

𝑝0,0
2𝑛 = (

2𝑛
𝑛
)𝑝𝑛(1 − 𝑝)𝑛 =

2𝑛!

𝑛!𝑛!
𝑝𝑛(1 − 𝑝)𝑛 ≈

 √4𝜋𝑛(
2𝑛

𝑒
)
2𝑛

 (√2𝜋𝑛(
𝑛

𝑒
)
𝑛
)
2 𝑝

𝑛(1 − 𝑝)𝑛 ≈
 2√𝜋𝑛∗22𝑛𝑝𝑛(1−𝑝)𝑛

2𝜋𝑛
= 

22𝑛𝑝𝑛(1−𝑝)𝑛

√𝜋𝑛
  

 

Proposition: If ∑𝑝0,0
2𝑛 <  ∞ (converges), then ∑

22𝑛𝑝𝑛(1−𝑝)𝑛

√𝜋𝑛
< ∞ (converges) 

 

Random Walk is recurrent when 𝑝 =
1

2
   &  𝑑𝑖𝑚 ≤ 2, else it is transient.  

 

Positive 

Recurrence &  

Null Recurrence 

Given a recurrent state 𝑖, let 𝑇𝑖 be the first time to revisit 𝑖 after we started from 𝑖, we have: 

𝑚𝑖 = 𝐸(𝑇𝑖|𝑋0 = 𝑖) 
𝑚𝑖 is the mean time to return to state 𝑖. 

1. 𝑖 is positive recurrent if 𝑚𝑖 <  ∞ (class properties, always true when MC is finite & irreducible) 

2. 𝑖 is null recurrent if 𝑚𝑖 =  ∞ (class properties, can only happen with infinite MC) 

 

Stationary 

Distribution 

A vector is called the stationary distribution if it satisfies: (there can be more than 1 stationary distributions) 

1. 𝜋 = 𝜋�̃� 

2. ∑ 𝜋𝑖𝑖 = 1 

3. 0 ≤ 𝜋𝑖 ≤ 1 

 

For an irreducible MC,  

1. If 𝜋 = 𝜋�̃� has no solution, then MC is null recurrent or transient. 

2. If 𝜋 = 𝜋�̃� has solution, then MC is positive recurrent. 

 

Ergodic: a state or MC is positive recurrent & aperiodic. 

- For finite state MC, ergodic means recurrent & aperiodic 

 

Big Theorem: For an irreducible, ergodic MC (if MC finite then irreducible & aperiodic): 

1. There is a unique stationary distribution, i.e., one vector satisfying: 𝜋 = 𝜋�̃�, ∑ 𝜋𝑖𝑖 = 1 (from 

irreducibility) 

2. Limiting distribution is the stationary distribution: lim
𝑛→∞

𝛼�̃�𝑛 = 𝜋 (from aperiodicity) 

3. Mean time needed to return to state 𝑖: 𝑚𝑖 =
1

𝜋𝑖
 (from irreducibility) 

4. 𝜋𝑖 = lim
𝑛→∞

# 𝑜𝑓 𝑣𝑖𝑠𝑖𝑡𝑠 𝑡𝑜 𝑠𝑡𝑎𝑡𝑒 𝑖 𝑡𝑖𝑙𝑙 𝑛

𝑛
= 𝑙𝑜𝑛𝑔 𝑟𝑢𝑛 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑎𝑡 𝑖 (from irreducibility) 

 

Doubly Stochastic 

Markov Chain 
�̃� is called doubly stochastic if its columns also sum up to 1. If a MC is doubly stochastic, then it has the 

following stationary distribution: 𝜋 = (𝜋𝑖 … 𝜋𝑛) = (
1

𝑛
…

1

𝑛
) 



 

Time-Reversable 

Markov Chain 

A Markov chain is time reversable if:  

�̃� = �̃� 

𝑞𝑖𝑗 = 𝑝𝑗𝑖 ∗
𝜋𝑗

𝜋𝑖
= 𝑝𝑖𝑗 

Detailed Balance Equation (to prove time reversibility & find stationary distribution): 

𝑥𝑖𝑝𝑖𝑗 = 𝑥𝑗𝑝𝑗𝑖 , 𝑥 = {𝑥1… . . 𝑥𝑛} 

∑𝑥𝑖 = 1

𝑖

 

If satisfied, 𝑥 is the stationary distribution & MC is time reversable. 

 

Generating 

Functions 
For a random variable 𝜉 ∈ {1, 2, 3, … }, its generation function 𝐺𝜉(𝑠) satisfies: 

𝐺𝜉(𝑠) = 𝐸(𝑠
𝜉) =∑𝑠𝑗𝑝( 𝜉 = 𝑗)

𝑗≥0

 

 

Properties of Generating Functions: 

1. If 𝑋 & 𝑌 are independent random variables, then 𝐺𝑋+𝑌(𝑠) = 𝐺𝑋(𝑠) ∗ 𝐺𝑌(𝑆) 
2. Let 𝑇 = 𝑋1 + 𝑋2 +⋯𝑋𝑁 = ∑ 𝑋𝑖

𝑁
𝑖=1 , such that all 𝑋𝑖 are independent & follow the same distribution, then 

suppose 𝑁 is independent from all 𝑋, we have: 

𝐺𝑇(𝑠) = 𝐺𝑁(𝐺𝑋(𝑠)) = 𝐺𝑁(𝑠) ∘ 𝐺𝑋(𝑠) 
3. Implication: 𝐺𝑍𝑛(𝑠) = 𝐺𝑛(𝑠) = 𝐺𝑛(𝐺𝑋(𝑠)) 

 

Some Derivations from Generating Functions: 

1. 𝐺𝑋(0) = 𝐺(0) =  ∑ 𝑠𝑗𝑝(X = 𝑗)𝑗≥0 , 𝑠 = 0 = 𝑝(𝑋 = 0) 

2. 𝐺𝑋(1) = 𝐺(1) = ∑ 𝑠𝑗𝑝(X = 𝑗)𝑗≥0 , 𝑠 = 1 =  ∑ 𝑝(𝑋 = 𝑗)𝑗≥0   

3. 𝐺𝑋
′ (𝑠) =  ∑ 𝑗 ∗ 𝑠𝑗−1𝑝(𝑋 = 𝑗)𝑗  

4. 𝐺𝑋
′ (1) = ∑ 𝑗 ∗ 𝑠𝑗−1𝑝(𝑋 = 𝑗)𝑗 , 𝑠 = 1 =  ∑ 𝑗 ∗ 1 ∗ 𝑝(𝑋 = 𝑗)𝑗≥0 = 𝐸(𝑋) 

5. 𝐺𝑋
′′(𝑠) =  ∑ 𝑗 ∗ (𝑗 − 1) ∗ 𝑠𝑗−2𝑝(𝑋 = 𝑗)𝑗  

6. 𝐺𝑋
′′(1) = ∑ 𝑗 ∗ (𝑗 − 1) ∗ 𝑠𝑗−2𝑝(𝑋 = 𝑗)𝑗 , 𝑠 = 1 =  ∑ 𝑗 ∗ (𝑗 − 1) ∗ 1 ∗ 𝑝(𝑋 = 𝑗)𝑗 = ∑ 𝑗2𝑝(𝑋 = 𝑗)𝑗 −

∑ 𝑗𝑝(𝑋 = 𝑗)𝑗≥0 = 𝐸(𝑋2) − 𝐸(𝑋)   

 

Expected Values & Variance of 𝑋 in relation to its generating function: 

1. 𝐸(𝑋) = 𝐺𝑋′(1) 

2. 𝑉𝑎𝑟(𝑋) = 𝐸(𝑋2) − (𝐸(𝑋))
2
= 𝐸(𝑋2) − 𝐸(𝑋) + 𝐸(𝑋) − (𝐸(𝑋))

2
= 𝐺𝑋

′′(1) + 𝐺𝑋
′ (1) − (𝐺𝑋

′ (1))
2
 

 

How to Find 𝑝(𝑋 = 𝑘): 
1. Look at the coefficient before 𝑆𝑘 

2. Generally, 𝑝(𝑋 = 𝑘) =
𝐺𝑋
(𝑘)(0)

𝑘!
 

 

Branching 

Process 
Branching Process models (𝑍𝑛)𝑛≥0: the population at generation n with assumption that 𝑍0 = 1. 𝑋 is a random 

variable to having the distribution of the number of offspring an individual can have. 

 

Properties at the Branching Process: 

1. MC is (𝑍𝑛)𝑛≥0 

2. 𝑆 = {0, 1, 2, 3, … . } ∈ 𝑁 

3. Absorbing State (recurrent state): 𝑆 = 0 (extinction) 

4. Transient states: 𝑆 ∉ 0 

 

Generating Function of the Branching Process: 

1. 𝐺𝑍𝑛(𝑠) = 𝐺𝑛(𝑠) = 𝐺 (𝐺 (𝐺(. . 𝐺(𝑠)))) , 𝑛 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 

2. 𝐺𝑚+𝑛(𝑠) = 𝐺𝑚(𝐺𝑛(𝑠)) = 𝐺𝑛(𝐺𝑚(𝑠)) = 𝐺𝑚(𝑠) ∘ 𝐺𝑛(𝑠) 

3. 𝑝(𝑍𝑛 = 𝑘) =
𝐺𝑛
(𝑘)(0)

𝑘!
= 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑠𝑘 

 

Mean & Variance of 𝑍𝑛: 

Let 𝜇 = 𝐸(𝑋), 𝜎2 = 𝑉𝑎𝑟(𝑥), then: 



1. 𝐸(𝑍𝑛) = 𝜇
𝑛 

2. 𝑉𝑎𝑟(𝑍𝑛) =  {
𝑛𝜎2,     𝑤ℎ𝑒𝑛 𝜇 = 1

𝜎2(𝜇𝑛−1)𝜇𝑛−1

𝜇−1
  ,   𝑤ℎ𝑒𝑛 𝜇 ≠ 1

 

 

Probability of Extinction: 

1. Extinction at generation n: {𝑍𝑛 = 0}, Extinction by Generation n: {𝑍𝑛 = 0} 
3. Probability of Extinction: 𝑝(𝑍𝑛 = 0) ; Probability of Eventual Extinction: lim

𝑛→∞
𝑝(𝑍𝑛 = 0) =  lim

𝑛→∞
𝐺𝑛
′ (0)  

 

 

 

 

4. Theorems: 

 𝑝(𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙 𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛) =  𝜂 should satisfy the following conditions: 

i. 𝜂 is the smallest non-negative root of 𝐺(𝑠) = 𝑠 
ii. If 𝜇 < 1, then 𝜂 = 1 (this means on average every individual cannot produce an offspring, thus the 

total population is shrinking at every generation, which means it will eventual go extinct) 

iii. If 𝜇 > 1, then 𝜂 < 1 

iv. If 𝜇 = 1, then: 

a. If 𝜎2 = 0, then 𝜂 = 0. (𝑍𝑛 = 1 for all n) 

b. If 𝜎2 > 0, then 𝜂 = 1 

 

Exponential 

Distribution 
We call 𝑋 an exponential random variable with parameter 𝜆 > 0, 𝑋 ~ 𝐸𝑥𝑝𝑜𝑛(𝜆) if 𝑋 has the following density: 

𝑓(𝑥) =  {𝜆𝑒
−𝜆𝑥, 𝑥 ≥ 0

0, 𝑥 < 0
 

 

1. Distributional Rules of Exponential Random Variables: Suppose 𝑋 ~ 𝐸𝑥𝑝𝑜𝑛(𝜆) 

i. 𝐸(𝑋) =
1

𝜆
 

ii. 𝑉𝑎𝑟(𝑋) =
1

𝜆2
 

iii. 𝑝(𝑋 > 𝑡) =  ∫ 𝜆𝑒−𝜆𝑥
∞

𝑡
= 𝜆 ∗ (−

1

𝜆
) (𝑒−𝜆∗∞ − 𝑒−𝜆∗𝑡) = 𝜆 ∗ (−

1

𝜆
) ∗ (− 𝑒−𝜆∗𝑡) = 𝑒−𝜆𝑡 

 

2. Properties of Exponential Distributions: 

i. Memoryless Property: suppose 𝑇 ~ 𝐸𝑥𝑝𝑜𝑛(𝜆) 
a. 𝑝(𝑇 ≥ 𝑡 + 𝑠|𝑇 ≥ 𝑠) = 𝑝(𝑇 ≥ 𝑡) 
b. 𝑝(𝑇 ≤ 𝑡 + 𝑠|𝑇 ≥ 𝑠) = 1 − 𝑝(𝑇 ≥ 𝑡 + 𝑠|𝑇 ≥ 𝑠) = 1 − 𝑝(𝑇 ≥ 𝑡) = 𝑝(𝑇 ≤ 𝑡) 
c. Due to the memoryless property, suppose we have 3 people (A, B, C) all being served with time 

𝑇~ 𝐸𝑥𝑝𝑜𝑛(𝜆) with two people (A, B) being served first, then suppose A left first, the probability of C 

leaving before B is 𝑝(𝑇𝐶 < 𝑇𝐵) =
𝜆

2𝜆
=

1

2
 (note that this is because when A left the remaining time of B 

being served is still 𝐸𝑥𝑝𝑜𝑛(𝜆)).  
 

ii. Minimum of Exponential: 

Suppose 𝑋 ~ 𝐸𝑥𝑝𝑜𝑛(𝜆1), 𝑌 ~ 𝐸𝑥𝑝𝑜𝑛(𝜆2), such that 𝑋 & 𝑌 are independent,  𝑍 = min(𝑋, 𝑌), then we 

have: 

𝑝(𝑍 ≥ 𝑡) = 𝑝(min(𝑋, 𝑌) ≥ 𝑡) = 𝑝(𝑋 > 𝑡, 𝑌 > 𝑡) =  𝑒−(𝜆1+𝜆2)𝑡 
Thus, 𝑍 ~ 𝐸𝑥𝑝𝑜𝑛(𝜆1 + 𝜆2) 
 

iii. Probability of Comparing two exponential random variables: 

Suppose 𝑋 ~ 𝐸𝑥𝑝𝑜𝑛(𝜆1), 𝑌 ~ 𝐸𝑥𝑝𝑜𝑛(𝜆2), such that 𝑋 & 𝑌 are independent, then: 

𝑝(𝑋 > 𝑌) =
𝜆1

𝜆2 + 𝜆1
 

𝑝(𝑌 > 𝑋) =
𝜆2

𝜆2 + 𝜆1
 

 

iv. Sum of iid exponential random variable follows a gamma distribution: 

a. Gamma Distribution: Suppose 𝑋 ~ Γ(𝑛, 𝜆) 

𝑓(𝑥) =  {
𝜆𝑒−𝑡(𝜆𝑡)𝑛−1

(𝑛 − 1)!
0, 𝑡 < 0

, 𝑡 ≥ 0, 𝐸(𝑋) =
𝑛

𝜆
, 𝑉𝑎𝑟(𝑋) =

𝑛

𝜆2
 



b. Let 𝑋1, 𝑋2, … , 𝑋𝑛 be iid exponential random variables, then 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛~ Γ(𝑛, 𝜆) 
 

Poisson Process: Poisson Distribution: suppose 𝑋 ~ 𝑃𝑜𝑖𝑠(𝜆): 

1. 𝑝(𝑋 = 𝑘) =
𝑒−𝑘𝜆𝑘

𝑘!
, 2. 𝐸(𝑋) = 𝜆, 3. 𝑉𝑎𝑟(𝑋) = 𝜆 

 

Poisson Process: 

The homogeneous Poisson Process with rate 𝜆 is a counting process 𝑁(𝑡)𝑡≥0 satisfying: 

𝑁(𝑡) = max{𝑛 |  ∑ 𝑇𝑖 ≤ 𝑡
𝑛
𝑖=1 }, 𝑇𝑖 are inter-event time such that 𝑇𝑖 ~ 𝐸𝑥𝑝𝑜𝑛(𝜆) 

i. 𝑁(𝑡) ~ 𝑃𝑜𝑖𝑠(𝜆𝑡), 𝑝(𝑁(𝑡) = 𝑘) =
𝑒−𝜆𝑡(𝜆𝑡)𝑘

𝑘!
, 𝐸(𝑁(𝑡)) = 𝑉𝑎𝑟(𝑁(𝑡)) = 𝜆𝑡 

Second definition: A counting process 𝑁(𝑡)𝑡≥0 is a rate 𝜆 Poisson process if: 

i. Increments are independent: 𝑁(𝑠) − 𝑁(𝑡)  &  𝑁(𝑢) − 𝑁(𝑣) are independent. 

ii. 𝑝(𝑁(𝑡 + ℎ) − 𝑁(𝑡) = 1) = 𝜆ℎ + 𝑜(ℎ) 
iii. 𝑝(𝑁(𝑡 + ℎ) − 𝑁(𝑡) ≥ 2) = 𝑜(ℎ) 

 

Properties of Poisson Process: 

1. Let 𝑁1(𝑡)𝑡≥0 & 𝑁2(𝑡)𝑡≥0 be independent Poisson processes with rates 𝜆1 and 𝜆2. Let 𝑁(𝑡) = 𝑁1(𝑡) + 𝑁2(𝑡), 
then we know 𝑁(𝑡)𝑡≥0 is a Poisson process with rate 𝜆1 + 𝜆2. 

2. Conditioned on 1 event happens between [0, 𝑡], then the probability of the occurring before any time between 

the interval 𝑠 ∈ [0, 𝑡], 𝑝(𝑇1 < 𝑆 |𝑁(𝑡) = 1) =
𝑠

𝑡
  ~ 𝑢𝑛𝑖𝑓(0, 𝑡). (Distribution of the conditional first arrival time 

is uniform).  

3. Theorem: Let 𝑁(𝑡)𝑡≥0 be a Poisson process. Conditioned on 𝑁(𝑡) = 𝑛, the 𝑛 arrival times 𝑆1, 𝑆2, … , 𝑆𝑛 have 

the same distribution as the order statistics corresponding to 𝑛 iid 𝑢𝑛𝑖𝑓(0, 𝑡) random variables.  

𝑓(𝑆1, 𝑆2, … , 𝑆2| 𝑁(𝑡) = 𝑛) =
𝑛!

𝑡𝑛
 

 

Poisson Thinning: 

1. Homogeneous Poisson Thinning:  

Let 𝑁(𝑡)𝑡≥0 be a rate 𝜆 Poisson process and suppose its events are independently Type 1 with probability 𝑝 and 

Type 2 with probability 1 − 𝑝. Then, let 𝑁1(𝑡) be the number of type 1 events & 𝑁2(𝑡) be the number of type 2 

events, we know 𝑁1(𝑡) & 𝑁2(𝑡) are independent Poisson processes with rates 𝑝𝜆 & (1 − 𝑝)𝜆 respectively.  

2. Non-homogeneous Poisson Thinning: 

Let 𝑁(𝑡)𝑡≥0 be a rate 𝜆 Poisson process & suppose each of its events are classified independently by 𝑘 types 

such that the occurrence of event 𝑖 ∈ 𝑘 at time t has the probability of 𝑝𝑖(𝑡). Then, let 𝑁𝑖(𝑡) be the number of 

occurrences of type 𝑖 by time 𝑡, 𝑁1(𝑡), … ,𝑁𝑘(𝑡) are independent Poisson processes with rate 𝜆𝑖 = 𝜆 ∫ 𝑝𝑖(𝑠)𝑑𝑠
𝑡

0
.  

 

Continuous Time 

Markov Chain 

(CTMT)  

Let {𝑋(𝑡): 𝑡 ≥ 0} be a collection of random variables, each taking values in 𝑁. We say {𝑋(𝑡): 𝑡 ≥ 0} is a 

continuous time MC if for all 𝑠, 𝑡 ≥ 0, 𝑖, 𝑗 ∈ 𝑁, for all {𝑥(𝑢) ∈ 𝑁: 𝑢 ∈ [0, 𝑠]}, the Markov property is satisfied: 

𝑝(𝑋(𝑠 + 𝑡) = 𝑗|𝑋(𝑠) = 𝑖, {𝑋(𝑢) = 𝑥(𝑢) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢 ∈ [0, 𝑠]}) = 𝑝(𝑋(𝑠 + 𝑡) = 𝑗|𝑋(𝑠) = 𝑖) 
 

Properties of CTMC:  

i. Time Homogeneity: 𝑝(𝑋(𝑠 + 𝑡) = 𝑗|𝑋(𝑠) = 𝑖) = 𝑝(𝑋(𝑡) = 𝑗|𝑋(0) = 𝑖) 
ii. Inter-arrival time 𝑇𝑖 ~ 𝐸𝑥𝑝(𝑣𝑖)  

iii. Parameters of CTMC: 𝑝𝑖𝑗 , 𝑣𝑖, 𝑞𝑖𝑗 = 𝑝𝑖𝑗𝑣𝑖, 𝑝𝑖𝑖 = 0 

iv. Irreducible CTMC: suppose 𝑥, 𝑦 ∈ 𝑆, then 𝑥, 𝑦 communicate if 𝑝𝑥,𝑦(𝑡) > 0 & 𝑝𝑦,𝑥(𝑠) > 0 for some 

𝑠, 𝑡 ≥ 0. The CTMC is irreducible if there is only 1 communicating class.  

 

Chapman Kolmogorov Equations in CTMC: 𝑝𝑖𝑗(𝑠 + 𝑡) = ∑ 𝑝𝑘𝑗(𝑡) ∗ 𝑝𝑖ℎ(𝑠)𝑘∈𝑆  

 

Kolmogorov Backwards Equations: 𝑝𝑖𝑗
′ (𝑡) =  ∑ 𝑞𝑖𝑘𝑝𝑘𝑗(𝑡) − 𝑣𝑖𝑝𝑖𝑗(𝑡)𝑘≠𝑖 , 𝑝𝑖𝑗(0) =  {

0 𝑖𝑓 𝑖 ≠ 𝑗
1 𝑖𝑓 𝑖 = 𝑗

 

 

Kolmogorov Forwards Equation: 𝑝𝑖𝑗
′ (𝑡) =  ∑ 𝑝𝑖𝑘(𝑡)𝑞𝑘𝑗 − 𝑣𝑗𝑝𝑖𝑗(𝑡)𝑘≠𝑗 , 𝑝𝑖𝑗(0) =  {

0 𝑖𝑓 𝑖 ≠ 𝑗
1 𝑖𝑓 𝑖 = 𝑗

 

 

Forming the Matrix Q: 𝑄𝑖𝑗 = {
−𝑣𝑖 𝑖𝑓 𝑖 = 𝑗

𝑞𝑖𝑗 = 𝑣𝑖𝑝𝑖𝑗  𝑖𝑓 𝑖 ≠ 𝑗
 

 

Solving Differential Equations: 



1. Some rules regarding to solving differential equations: 

i. If 𝑓′(𝑥) = 𝑎 ∗ 𝑓(𝑥), then 𝑓(𝑥) = 𝐶 ∗ 𝑒𝑎𝑥, for some constant 𝐶 ∈ 𝑅 

2. Procedures of Solving Simple Differential Equations: 

i. Suppose given 𝑓′(𝑥) = 𝑎 ∗ 𝑓(𝑥) + 𝑏, 𝑓(𝑑) = 𝑣  𝑏, 𝑎, 𝑑, 𝑣 ∈ 𝑅, then we write 𝑓(𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥) 
ii. Then by solving 𝑓1(𝑥) using the rules above, we get: 𝑓1(𝑥) = 𝐶 ∗ 𝑒

𝑎𝑥, 𝐶 ∈ 𝑅 

iii. Given that 𝑓2(𝑥) is assumed to be constants, we have 𝑓2
′(𝑥) = 0 = 𝑎 ∗ 𝑓2(𝑥) + 𝑏,   𝑓2(𝑥) =  −

𝑏

𝑎
 

iv. Using the 𝑓(𝑑) = 𝑣 to solve for 𝐶: 

𝐶 ∗ 𝑒𝑎𝑑 −
𝑏

𝑎
= 𝑣, 𝐶 =

𝑣 +
𝑏
𝑎

𝑒𝑎𝑑
 

 

Using the balance equation to find the limiting Probabilities: 𝑃 = (𝑃1, … , 𝑃𝑛) 
1. Balance Equation: 𝑣𝑗𝑃𝑗 = ∑ 𝑞𝑘𝑗𝑃𝑘𝑘≠𝑗 , ∑ 𝑃𝑗𝑗 = 1  

2. Theorem: For a recurrent, irreducible CTMC,  

i. The limiting probabilities 𝑃 exist. 

ii. 𝑃𝑖 is the long-run proportion of time that CTMC is in state 𝑖 
 

Birth & Death Process: 

 

Let {𝑋(𝑡), 𝑡 ≥ 0} be a birth & death process with the associated birth rate: 𝜆𝑖, 𝑖 ∈ 𝑁 and death rate 𝜇𝑖 , 𝑖 ∈ 𝑁, 

then we have the following parameters: 

1. 𝑣𝑖 = 𝜇𝑖 + 𝜆𝑖 because the time between events 𝑇𝑖  ~min(𝐸𝑥𝑝𝑜𝑛(𝜆𝑖), 𝐸𝑥𝑝𝑜𝑛(𝜇𝑖)) ~ 𝐸𝑥𝑝𝑜𝑛(𝜆𝑖 + 𝜇𝑖) 

i. Note: 𝑣0 = 𝜆0 because there’s no death at 0.   

2. 𝑝𝑖,𝑖+1 = 𝑝(𝐸𝑥𝑝𝑜𝑛(𝜆𝑖) < 𝐸𝑥𝑝𝑜𝑛(𝜇𝑖)) =
𝜆𝑖

𝜇𝑖+𝜆𝑖
, 𝑞𝑖,𝑖+1 = 𝑣𝑖 ∗ 𝑝𝑖,𝑖+1 = (𝜇𝑖 + 𝜆𝑖)

𝜆𝑖

𝜇𝑖+𝜆𝑖
= 𝜆𝑖 

3. 𝑝𝑖,𝑖−1 = 𝑝(𝐸𝑥𝑝𝑜𝑛(𝜇𝑖) < 𝐸𝑥𝑝𝑜𝑛(𝜆𝑖)) =
𝜇𝑖

𝜇𝑖+𝜆𝑖
, 𝑞𝑖,𝑖−1 = 𝑣𝑖 ∗ 𝑝𝑖,𝑖−1 = (𝜇𝑖 + 𝜆𝑖) ∗

𝜇𝑖

𝜇𝑖+𝜆𝑖
= 𝜇𝑖 

 

Solving for Limiting Distribution of Birth & Death Process: 

Using the balance equation, we have:  

1. 𝑣0𝑃0 = 𝑞1,0𝑃1 → 𝜆0𝑃0 = 𝜇1𝑃1 → 𝑃1 =
𝜆0

𝜇1
𝑃0 

2. 𝑣1𝑃1 = 𝑞0,1𝑃0 + 𝑞2,1𝑃2 → (𝜆1 + 𝜇1)𝑃1 = 𝜆0𝑃0 + 𝜇2𝑃2 → (𝜆1 + 𝜇1)𝑃1 = 𝜇1𝑃1 + 𝜇2𝑃2 → 𝑃2 =
𝜆1

𝜇2
𝑃1 

       ⋮                            ⋮ 

3.  𝑃𝑛 =
𝜆𝑛−1

𝜇𝑛
𝑃𝑛−1 =

∏ 𝜆𝑖
𝑛−1
𝑖=0

∏ 𝜇𝑖
𝑛
𝑖=1

∗ 𝑃0, 𝑟𝑛 = ∏
𝜆𝑖

𝜇𝑖+1

𝑛−1
𝑖=0   

Using the fact that ∑ 𝑃𝑖𝑖∈𝑛 = 1, we have: 

4. ∑ 𝑃𝑖𝑖∈𝑛 = ∑ 𝑟𝑗𝑃0
∞
𝑖=0 = 1 → 𝑃0 =

1

∑ 𝑟𝑗
∞
𝑖=0

, suppose all 𝜆𝑖 & 𝜇𝑖 are the same, ∑ 𝑟𝑗
∞
𝑖=0 = (

𝜆

𝜇
)
𝑛
=

1

1−
𝜆

𝜇

 

Two Cases: 

i. If ∑ 𝑟𝑗
∞
𝑖=0 →  ∞, then we do not have the limiting distribution which means that this CTMC is null 

recurrent or transient. 

ii. If ∑ 𝑟𝑗
∞
𝑖=0 <  ∞, then the limiting probability exists.  

 

 

Stationary Distribution of CTMC 𝑃 = {𝑃1, . . 𝑃𝑛}: we can also use the balance equation to find it, or to save time 

using the detailed equation to get the stationary distribution & reversibility.  

 

Embedded Chain: 

Based on the CTMC {𝑋(𝑡): 𝑡 ≥} with transition probabilities 𝑝𝑖𝑗 & rates 𝑣𝑖, we construct the embedded (discrete 

time) MC {𝑌𝑛: 𝑛 = 0,1,… } such that 𝑌𝑛 = 𝑛th states that 𝑋(𝑡) jumps to = 𝑋(𝑆𝑛) where 𝑆𝑛 is the time of the 𝑛th 

jump.  

1. Properties of the Embedded Chain: 

i. Transition matrix �̃�: (�̃�)
𝑖,𝑗
= 𝑝𝑖𝑗 

ii. If the embedded chain is irreducible & finite, then we know that the corresponding CTMC is positive 

recurrent & irreducible such that it satisfies the limiting distribution theorem above.  

iii. Suppose �̃� = (𝜋1, … , 𝜋𝑛) is the stationary distribution for the embedded chain and let 𝑍 =  ∑
𝜋𝑖

𝑣𝑖
< ∞𝑖∈𝑛 , 

then the stationary distribution for the original CTMC: 𝑃𝑖 =
1

𝑧
∗
𝜋𝑖

𝑣𝑖
 

 



Detailed Balance Equation of CTMC: 

Consider a positive recurrent, irreducible CTMC. If there is a vector 𝑃 = (𝑃0, …𝑃𝑛) satisfying the detailed 

balance equations: 

1. ∑ 𝑃𝑖𝑖∈𝑛 = 1 

2. 𝑃𝑖 ∗ 𝑞𝑖,𝑗 = 𝑃𝑗 ∗ 𝑞𝑗,𝑖   ∀ 𝑖 ≠ 𝑗, 𝑖 & 𝑗 ∈ 𝑛 

Then 𝑃 is the unique stationary distribution & the CTMC is time reversible. Note that if the time reversibility 

satisfied, then the transition probabilities 𝑝𝑖𝑗 would be the same for the forward & backward process (same as 

the discrete case).   

 

 


