MATH 303 Review Sheet:

General Probability rules	Total Law of Probability:
	$p(x) = \sum_{y} p(x, y) = \sum_{y} p(x y) * p(y)$
	Conditional Expectation:
	$E(X) = \sum_{Y} E(X Y) * p(Y)$
	Notes on some useful distributions:
	1. If $X \sim Binom(n, p)$, then $E(X) = np$, $Var(X) = np(1-p)$, $f(x) = \binom{n}{x} (p)^{x} (1-p)^{n-x}$
	2. If $X \sim Geom1(\pi)$, then $f(x) = (1 - \pi)^x \pi$, $E(x) = \frac{1 - \pi}{\pi}$, $Var(x) = \frac{1 - \pi}{\pi^2}$
	3. If $X \sim Geom(\pi)$, then $f(x) = (1 - \pi)^{x-1}\pi$, $E(x) = \frac{1}{\pi}$, $Var(x) = \frac{1 - \pi}{\pi^2}$
	Geometric Series:
	$\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}$
	Binomial Theorem:
	$\sum_{k=0}^{n} {n \choose k} x^{k} y^{n-k} = (x+y)^{n}$
Markov Property	For all $n \in \mathbb{N} \& X_i \in S, X_n, n \ge 0$ is a Markov Chain when it satisfies: $p(X_{n+1} = x_{n+1} X_0 = x_0, \dots, X_n = x_n) = p(X_{n+1} = x_{n+1} X_n = x_n)$
	Literally, the next state only depends on the current state.
Homogeneous Markov Chain	For all x, $y \in S$, a homogeneous Markov Chain should have $p(X_{n+1} = y X_n = x)$ being the same for all states.
	For Homogenous MC: $E(X_{n+s} X_s = i) = E(X_n X_0 = i), E(X_n X_0 = j, X_i = i) = E(X_{n-1} X_0 = i)$
Chapman- Kolmogorov	$p_{i,j}^{m+n} = \sum_{i} p_{i,k}^m * p_{k,j}^n$
equation	n-step transition matrix: $\tilde{p}^{(n)} = \tilde{p}^n$
Accessibility & Communication	1. Accessible: S_j is accessible from S_i if there exists $n \in N$ such that $p_{ij}^n > 0$.
	 2. Communicate: S_j communicates with S_i if S_i is accessible from S_j & S_j is accessible from S_i. - Communication is an equivalent relationship (reflexive: S_i communicate with itself, transitive, symmetric) - All communicating classes partition the state space S. - For an irreducible MC, there is only 1 recurrent communicating class.
Period of States	Period of States $d(i)$: greatest common divisor of $n \in N$, $p_{i,i}^n > 0$.
	- All States of the same communicating class share the same period (class property) Aperiodic: a state or MC has a period of 1.
Recurrence & Transience	 Let f_i = p(X_n = i, n ≥ 1, n ∈ N X₀ = i) (probability of return to state i if started from state i): 1. If state i is recurrent, then we have: f_i = 1 2. If state i is transient, we have f_i < 1
	Proposition: Transience & Recurrence are class properties.
	Proposition: for an irreducible, finite MC, the MC is recurrent
Number of Returns (Visits)	Let $N_i = \# (n \ge 0; X_n = i) \cup \infty$, N_i denotes to number of visits to state <i>i</i> .
	If <i>i</i> is recurrent, we have:
Matrix Inverse:	

$\begin{bmatrix} a & b \end{bmatrix}^{-1} =$	$p(N_i = \infty \mid X_0 = i) = 1$
$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$	$\begin{cases} E(N_i X_0 = i) = \sum_{n=0}^{\infty} p_{i,i}^n = 1\\ same for all other states in the same C_i with i \end{cases}$
\tilde{p}^T : transition	same for all other states in the same C_i with i
matrix for all transient states.	If <i>i</i> is transient, we have:
	$\int E(N_i X_0 = i) = \sum p_{i,i}^n = \frac{1}{1 - f_i} < \infty$
	$\begin{cases} E(N_i X_0 = i) = \sum_{\substack{n=0\\f_i < 1}}^{\infty} p_{i,i}^n = \frac{1}{1 - f_i} < \infty \\ f_i < 1 \\ same for other states in the same C_i \end{cases}$
	$S_{i,j}$: mean Time (Number of Visits) to Transient state <i>j</i> starting from state <i>i</i> $S_{ij} = E(N_j X_0 = i) = \left[\left(I_n - \widetilde{P_T} \right)^{-1} \right]_{ij}$
Closedness	A communicating Class is closed if all $i \in C \& j \notin C, p_{ij} = 0$. Proposition: Finite, closed communication class is recurrent; communication class not closed is always transient.
Stirling Approximation	Stirling Approximation: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$
	$p_{0,0}^{2n} = \binom{2n}{n} p^n (1-p)^n = \frac{2n!}{n!n!} p^n (1-p)^n \approx \frac{\sqrt{4\pi n} \left(\frac{2n}{e}\right)^{2n}}{\left(\sqrt{2\pi n} \left(\frac{n}{e}\right)^n\right)^2} p^n (1-p)^n \approx \frac{2\sqrt{\pi n} * 2^{2n} p^n (1-p)^n}{2\pi n} = \frac{2^{2n} p^n (1-p)^n}{\sqrt{\pi n}}$
	Proposition: If $\sum p_{0,0}^{2n} < \infty$ (converges), then $\sum \frac{2^{2n}p^n(1-p)^n}{\sqrt{\pi n}} < \infty$ (converges)
	Random Walk is recurrent when $p = \frac{1}{2}$ & $dim \le 2$, else it is transient.
Positive Recurrence &	Given a recurrent state <i>i</i> , let T_i be the first time to revisit <i>i</i> after we started from <i>i</i> , we have: $m_i = E(T_i X_0 = i)$
Null Recurrence	m_i is the mean time to return to state <i>i</i> . 1. <i>i</i> is positive recurrent if $m_i < \infty$ (class properties, always true when MC is finite & irreducible) 2. <i>i</i> is null recurrent if $m_i = \infty$ (class properties, can only happen with infinite MC)
Stationary Distribution	A vector is called the stationary distribution if it satisfies: (there can be more than 1 stationary distributions) 1. $\pi = \pi \tilde{P}$
	$2. \sum_{i} \pi_{i} = 1$ $3. 0 \le \pi_{i} \le 1$
	For an irreducible MC,
	1. If $\pi = \pi \tilde{P}$ has no solution, then MC is null recurrent or transient. 2. If $\pi = \pi \tilde{P}$ has solution, then MC is positive recurrent.
	Ergodic: a state or MC is positive recurrent & aperiodic. - For finite state MC, ergodic means recurrent & aperiodic
	Big Theorem: For an irreducible, ergodic MC (if MC finite then irreducible & aperiodic): 1. There is a unique stationary distribution, i.e., one vector satisfying: $\pi = \pi \tilde{P}$, $\sum_{i} \pi_{i} = 1$ (from irreducibility)
	2. Limiting distribution is the stationary distribution: $\lim_{n \to \infty} \alpha \tilde{P}^n = \pi$ (from aperiodicity)
	3. Mean time needed to return to state <i>i</i> : $m_i = \frac{1}{\pi_i}$ (from irreducibility)
	4. $\pi_i = \lim_{n \to \infty} \frac{\# of \ visits \ to \ state \ i \ till \ n}{n} = long \ run \ proportion \ of \ time \ spent \ at \ i \ (from \ irreducibility)$
Doubly Stochastic Markov Chain	\tilde{P} is called doubly stochastic if its columns also sum up to 1. If a MC is doubly stochastic, then it has the following stationary distribution: $\pi = (\pi_i \dots \pi_n) = (\frac{1}{n} \dots \frac{1}{n})$

Time-Reversable Markov Chain	A Markov chain is time reversable if: $\tilde{Q} = \tilde{P}$
Whatkov Chain	$q_{ij} = p_{ji} * \frac{\pi_j}{\pi_i} = p_{ij}$
	··· l
	Detailed Balance Equation (to prove time reversibility & find stationary distribution): $x_i p_{ij} = x_j p_{ji}, x = \{x_1 \dots x_n\}$
	$\sum_{i=1}^{n} x_i p_i x_i = 1$
	$\sum_{i} x_i = 1$
	If satisfied, x is the stationary distribution & MC is time reversable.
Generating	For a random variable $\xi \in \{1, 2, 3,\}$, its generation function $G_{\xi}(s)$ satisfies:
Functions	
	$G_{\xi}(s) = E(s^{\xi}) = \sum_{j \ge 0} s^j p(\xi = j)$
	Properties of Generating Functions:
	1. If X & Y are independent random variables, then $G_{X+Y}(s) = G_X(s) * G_Y(S)$
	2. Let $T = X_1 + X_2 + \cdots + X_N = \sum_{i=1}^N X_i$, such that all X_i are independent & follow the same distribution, then
	suppose N is independent from all X, we have: $G_T(s) = G_N(G_X(s)) = G_N(s) \circ G_X(s)$
	3. Implication: $G_{Z_n}(s) = G_n(s) = G_n(G_X(s))$
	Some Derivations from Generating Functions:
	1. $G_X(0) = G(0) = \sum_{j \ge 0} s^j p(X = j), s = 0 = p(X = 0)$
	2. $G_X(1) = G(1) = \sum_{j \ge 0} s^j p(X = j)$, $s = 1 = \sum_{j \ge 0} p(X = j)$
	3. $G'_X(s) = \sum_j j * s^{j-1} p(X = j)$
	4. $G'_X(1) = \sum_j j * s^{j-1} p(X=j), s = 1 = \sum_{j \ge 0} j * 1 * p(X=j) = E(X)$
	5. $G''_X(s) = \sum_j j * (j-1) * s^{j-2} p(X=j)$ 6. $G''_X(1) = \sum_j j * (j-1) * s^{j-2} p(X=j), s = 1 = \sum_j j * (j-1) * 1 * p(X=j) = \sum_j j^2 p(X=j) - \sum_j j^2 p(X=j) = \sum_j j^2 p($
	$\sum_{j\geq 0} jp(X=j) = E(X^2) - E(X)$
	Expected Values & Variance of X in relation to its generating function: 1. $E(X) = G_X'(1)$
	2. $Var(X) = E(X^2) - (E(X))^2 = E(X^2) - E(X) + E(X) - (E(X))^2 = G''_X(1) + G'_X(1) - (G'_X(1))^2$
	How to Find $p(X = k)$:
	1. Look at the coefficient before S^k
	2. Generally, $p(X = k) = \frac{G_X^{(k)}(0)}{k!}$
Branching Process	Branching Process models $(Z_n)_{n\geq 0}$: the population at generation n with assumption that $Z_0 = 1$. X is a random variable to having the distribution of the number of offspring an individual can have.
	Properties at the Branching Process:
	1. MC is $(Z_n)_{n\geq 0}$
	2. $S = \{0, 1, 2, 3, \dots\} \in \mathbb{N}$ 3. Absorbing State (requirement state): $S = 0$ (extinction)
	 3. Absorbing State (recurrent state): S = 0 (extinction) 4. Transient states: S ∉ 0
	Generating Function of the Branching Process:
	1. $G_{Z_n}(s) = G_n(s) = G\left(G\left(G(\ldots G(s))\right)\right)$, <i>n</i> compositions
	2. $G_{m+n}(s) = G_m(G_n(s)) = G_n(G_m(s)) = G_m(s) \circ G_n(s)$
	3. $p(Z_n = k) = \frac{G_n^{(k)}(0)}{k!} = coefficient of s^k$
	Mean & Variance of Z_n :
	Let $\mu = E(X), \sigma^2 = Var(x)$, then:

1. $E(Z_n) = \mu^n$ 2. $Var(Z_n) = \begin{cases} n\sigma^2, & \text{when } \mu = 1 \\ \frac{\sigma^2(\mu^n - 1)\mu^{n-1}}{\mu - 1} & \text{, when } \mu \neq 1 \end{cases}$ Probability of Extinction: 1. Extinction at generation n: { $Z_n = 0$ }, Extinction by Generation n: { $Z_n = 0$ } 3. Probability of Extinction: $p(Z_n = 0)$; Probability of Eventual Extinction: $\lim_{n \to \infty} p(Z_n = 0) = \lim_{n \to \infty} G'_n(0)$ 4. Theorems: $p(eventual extinction) = \eta$ should satisfy the following conditions: i. η is the smallest non-negative root of G(s) = sIf $\mu < 1$, then $\eta = 1$ (this means on average every individual cannot produce an offspring, thus the ii. total population is shrinking at every generation, which means it will eventual go extinct) iii. If $\mu > 1$, then $\eta < 1$ If $\mu = 1$, then: iv. a. If $\sigma^2 = 0$, then $\eta = 0$. ($Z_n = 1$ for all n) b. If $\sigma^2 > 0$, then $\eta = 1$ We call X an exponential random variable with parameter $\lambda > 0$, $X \sim Expon(\lambda)$ if X has the following density: Exponential $f(x) = \begin{cases} \lambda e^{-\lambda x}, x \ge 0\\ 0, x < 0 \end{cases}$ Distribution 1. Distributional Rules of Exponential Random Variables: Suppose $X \sim Expon(\lambda)$ $E(X) = \frac{1}{\lambda}$ ii. $Var(X) = \frac{1}{\lambda^2}$ iii. $p(X > t) = \int_t^\infty \lambda e^{-\lambda x} = \lambda * \left(-\frac{1}{\lambda}\right) \left(e^{-\lambda * \infty} - e^{-\lambda * t}\right) = \lambda * \left(-\frac{1}{\lambda}\right) * \left(-e^{-\lambda * t}\right) = e^{-\lambda t}$ 2. Properties of Exponential Distributions: Memoryless Property: suppose $T \sim Expon(\lambda)$ i. a. $p(T \ge t + s | T \ge s) = p(T \ge t)$ b. $p(T \le t + s | T \ge s) = 1 - p(T \ge t + s | T \ge s) = 1 - p(T \ge t) = p(T \le t)$ c. Due to the memoryless property, suppose we have 3 people (A, B, C) all being served with time $T \sim Expon(\lambda)$ with two people (A, B) being served first, then suppose A left first, the probability of C leaving before B is $p(T_C < T_B) = \frac{\lambda}{2\lambda} = \frac{1}{2}$ (note that this is because when A left the remaining time of B being served is still $Expon(\lambda)$). ii. Minimum of Exponential: Suppose $X \sim Expon(\lambda_1), Y \sim Expon(\lambda_2)$, such that X & Y are independent, $Z = \min(X, Y)$, then we have: $p(Z \ge t) = p(\min(X, Y) \ge t) = p(X > t, Y > t) = e^{-(\lambda_1 + \lambda_2)t}$ Thus, $Z \sim Expon(\lambda_1 + \lambda_2)$ iii. Probability of Comparing two exponential random variables: Suppose $X \sim Expon(\lambda_1)$, $Y \sim Expon(\lambda_2)$, such that X & Y are independent, then: $p(X > Y) = \frac{\lambda_1}{\lambda_2 + \lambda_1}$ $p(Y > X) = \frac{\lambda_2}{\lambda_2 + \lambda_1}$ Sum of iid exponential random variable follows a gamma distribution: iv. a. Gamma Distribution: Suppose $X \sim \Gamma(n, \lambda)$ $f(x) = \begin{cases} \frac{\lambda e^{-t} (\lambda t)^{n-1}}{(n-1)!}, t \ge 0, \qquad E(X) = \frac{n}{\lambda}, \qquad Var(X) = \frac{n}{\lambda^2} \end{cases}$

	b. Let $X_1, X_2,, X_n$ be iid exponential random variables, then $X_1 + X_2 + \cdots + X_n \sim \Gamma(n, \lambda)$
Poisson Process:	Poisson Distribution: suppose $X \sim Pois(\lambda)$:
	1. $p(X = k) = \frac{e^{-k}\lambda^k}{k!}$, 2. $E(X) = \lambda$, 3. $Var(X) = \lambda$
	Poisson Process: The homogeneous Poisson Process with rate λ is a counting process $N(t)_{t\geq 0}$ satisfying: $N(t) = \max\{n \mid \sum_{i=1}^{n} T_i \leq t\}, T_i \text{ are inter-event time such that } T_i \sim Expon(\lambda)$
	i. $N(t) \sim Pois(\lambda t), \ p(N(t) = k) = \frac{e^{-\lambda t}(\lambda t)^k}{k!}, E(N(t)) = Var(N(t)) = \lambda t$
	Second definition: A counting process $N(t)_{t\geq 0}$ is a rate λ Poisson process if: i. Increments are independent: $N(s) - N(t) \& N(u) - N(v)$ are independent. ii. $p(N(t+h) - N(t) = 1) = \lambda h + o(h)$ iii. $p(N(t+h) - N(t) \ge 2) = o(h)$
	Properties of Poisson Process: 1. Let $N_1(t)_{t\geq 0} \& N_2(t)_{t\geq 0}$ be independent Poisson processes with rates λ_1 and λ_2 . Let $N(t) = N_1(t) + N_2(t)$, then we know $N(t)_{t\geq 0}$ is a Poisson process with rate $\lambda_1 + \lambda_2$. 2. Conditioned on 1 event happens between $[0, t]$, then the probability of the occurring before any time between
	the interval $s \in [0, t]$, $p(T_1 < S N(t) = 1) = \frac{s}{t} \sim unif(0, t)$. (Distribution of the conditional first arrival time
	is uniform). 3. Theorem: Let $N(t)_{t\geq 0}$ be a Poisson process. Conditioned on $N(t) = n$, the <i>n</i> arrival times $S_1, S_2,, S_n$ have the same distribution as the order statistics corresponding to <i>n</i> iid $unif(0, t)$ random variables.
	$f(S_1, S_2, \dots, S_2 N(t) = n) = \frac{n!}{t^n}$
	Poisson Thinning: 1. Homogeneous Poisson Thinning: Let $N(t)_{t\geq 0}$ be a rate λ Poisson process and suppose its events are independently Type 1 with probability p and Type 2 with probability $1 - p$. Then, let $N_1(t)$ be the number of type 1 events & $N_2(t)$ be the number of type 2 events, we know $N_1(t) \& N_2(t)$ are independent Poisson processes with rates $p\lambda \& (1 - p)\lambda$ respectively. 2. Non-homogeneous Poisson Thinning: Let $N(t)_{t\geq 0}$ be a rate λ Poisson process & suppose each of its events are classified independently by k types such that the occurrence of event $i \in k$ at time t has the probability of $p_i(t)$. Then, let $N_i(t)$ be the number of occurrences of type i by time $t, N_1(t), \dots, N_k(t)$ are independent Poisson processes with rate $\lambda_i = \lambda \int_0^t p_i(s) ds$.
Continuous Time Markov Chain (CTMT)	Let $\{X(t): t \ge 0\}$ be a collection of random variables, each taking values in N . We say $\{X(t): t \ge 0\}$ is a continuous time MC if for all $s, t \ge 0, i, j \in N$, for all $\{x(u) \in N: u \in [0, s]\}$, the Markov property is satisfied: $p(X(s + t) = j X(s) = i, \{X(u) = x(u) \text{ for all } u \in [0, s]\}) = p(X(s + t) = j X(s) = i)$
	Properties of CTMC: i. Time Homogeneity: $p(X(s + t) = j X(s) = i) = p(X(t) = j X(0) = i)$ ii. Inter-arrival time $T_i \sim Exp(v_i)$ iii. Parameters of CTMC: $p_{ij}, v_i, q_{ij} = p_{ij}v_i, p_{ii} = 0$ iv. Irreducible CTMC: suppose $x, y \in S$, then x, y communicate if $p_{x,y}(t) > 0 \& p_{y,x}(s) > 0$ for some $s, t \ge 0$. The CTMC is irreducible if there is only 1 communicating class.
	Chapman Kolmogorov Equations in CTMC: $p_{ij}(s + t) = \sum_{k \in S} p_{kj}(t) * p_{ih}(s)$
	Kolmogorov Backwards Equations: $p'_{ij}(t) = \sum_{k \neq i} q_{ik} p_{kj}(t) - v_i p_{ij}(t)$, $p_{ij}(0) = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$
	Kolmogorov Forwards Equation: $p'_{ij}(t) = \sum_{k \neq j} p_{ik}(t)q_{kj} - v_j p_{ij}(t)$, $p_{ij}(0) = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$
	Forming the Matrix Q: $Q_{ij} = \begin{cases} -v_i & \text{if } i = j \\ q_{ij} = v_i p_{ij} & \text{if } i \neq j \end{cases}$
	Solving Differential Equations:

1. Some rules regarding to solving differential equations:

i. If f'(x) = a * f(x), then $f(x) = C * e^{ax}$, for some constant $C \in R$

2. Procedures of Solving Simple Differential Equations:

i. Suppose given f'(x) = a * f(x) + b, f(d) = v b, a, d, $v \in R$, then we write $f(x) = f_1(x) + f_2(x)$

ii. Then by solving $f_1(x)$ using the rules above, we get: $f_1(x) = C * e^{ax}$, $C \in R$

iii. Given that $f_2(x)$ is assumed to be constants, we have $f'_2(x) = 0 = a * f_2(x) + b$, $f_2(x) = -\frac{b}{a}$

iv. Using the f(d) = v to solve for C:

$$C * e^{ad} - \frac{b}{a} = v, \qquad C = \frac{v + \frac{b}{a}}{e^{ad}}$$

Using the balance equation to find the limiting Probabilities: $P = (P_1, ..., P_n)$ 1. Balance Equation: $v_j P_j = \sum_{k \neq j} q_{kj} P_k$, $\sum_j P_j = 1$

- 2. Theorem: For a recurrent, irreducible CTMC,
 - i. The limiting probabilities *P* exist.
 - ii. P_i is the long-run proportion of time that CTMC is in state i

Birth & Death Process:

Let {*X*(*t*), *t* \ge 0} be a birth & death process with the associated birth rate: λ_i , *i* \in *N* and death rate μ_i , *i* \in *N*, then we have the following parameters:

1. $v_i = \mu_i + \lambda_i$ because the time between events $T_i \sim \min(Expon(\lambda_i), Expon(\mu_i)) \sim Expon(\lambda_i + \mu_i)$ i. Note: $v_0 = \lambda_0$ because there's no death at 0.

2.
$$p_{i,i+1} = p(Expon(\lambda_i) < Expon(\mu_i)) = \frac{\lambda_i}{\mu_i + \lambda_i}, q_{i,i+1} = \nu_i * p_{i,i+1} = (\mu_i + \lambda_i) \frac{\lambda_i}{\mu_i + \lambda_i} = \lambda_i$$

3. $p_{i,i-1} = p(Expon(\mu_i) < Expon(\lambda_i)) = \frac{\mu_i}{\mu_i + \lambda_i}, q_{i,i-1} = \nu_i * p_{i,i-1} = (\mu_i + \lambda_i) * \frac{\mu_i}{\mu_i + \lambda_i} = \mu_i$

Solving for Limiting Distribution of Birth & Death Process: Using the balance equation, we have:

1. $v_0 P_0 = q_{1,0} P_1 \rightarrow \lambda_0 P_0 = \mu_1 P_1 \rightarrow P_1 = \frac{\lambda_0}{\mu_1} P_0$ 2. $v_1 P_1 = q_{0,1} P_0 + q_{2,1} P_2 \rightarrow (\lambda_1 + \mu_1) P_1 = \lambda_0 P_0 + \mu_2 P_2 \rightarrow (\lambda_1 + \mu_1) P_1 = \mu_1 P_1 + \mu_2 P_2 \rightarrow P_2 = \frac{\lambda_1}{\mu_2} P_1$: 3. $P_n = \frac{\lambda_{n-1}}{\mu_n} P_{n-1} = \frac{\prod_{i=0}^{n-1} \lambda_i}{\prod_{i=1}^{n-1} \mu_i} * P_0, \ r_n = \prod_{i=0}^{n-1} \frac{\lambda_i}{\mu_{i+1}}$ Using the fact that $\sum_{i \in n} P_i = 1$, we have: $\sum_{i \in n} P_i = \sum_{i=0}^{\infty} \sum_{i=0}^{n-1} \frac{1}{\mu_i} = \sum_{i=0}^{n-1} \sum_{i=0}^{n-1} \frac{1}{\mu_i} = \sum_{i=0}^{n-1} \sum_{i=0}^{n-1} \sum_{i=0}^{n-1} \frac{1}{\mu_i} = \sum_{i=0}^{n-1} \sum_{i=0}$

4.
$$\sum_{i \in n} P_i = \sum_{i=0}^{\infty} r_j P_0 = 1 \rightarrow P_0 = \frac{1}{\sum_{i=0}^{\infty} r_j}$$
, suppose all $\lambda_i \& \mu_i$ are the same, $\sum_{i=0}^{\infty} r_j = \left(\frac{\lambda}{\mu}\right)^n = \frac{1}{1 - \frac{\lambda}{\mu}}$.

Two Cases:

- i. If $\sum_{i=0}^{\infty} r_j \to \infty$, then we do not have the limiting distribution which means that this CTMC is null recurrent or transient.
- ii. If $\sum_{i=0}^{\infty} r_i < \infty$, then the limiting probability exists.

Stationary Distribution of CTMC $P = \{P_1, \dots, P_n\}$: we can also use the balance equation to find it, or to save time using the detailed equation to get the stationary distribution & reversibility.

Embedded Chain:

Based on the CTMC { $X(t): t \ge$ } with transition probabilities p_{ij} & rates v_i , we construct the embedded (discrete time) MC { $Y_n: n = 0, 1, ...$ } such that $Y_n = n$ th states that X(t) jumps to $= X(S_n)$ where S_n is the time of the *n*th jump.

1. Properties of the Embedded Chain:

- i. Transition matrix $\tilde{P}: (\tilde{P})_{i,i} = p_{ij}$
- ii. If the embedded chain is irreducible & finite, then we know that the corresponding CTMC is positive recurrent & irreducible such that it satisfies the limiting distribution theorem above.
- iii. Suppose $\tilde{\pi} = (\pi_1, ..., \pi_n)$ is the stationary distribution for the embedded chain and let $Z = \sum_{i \in n} \frac{\pi_i}{v_i} < \infty$,

then the stationary distribution for the original CTMC: $P_i = \frac{1}{2} * \frac{\pi_i}{n_i}$

Detailed Balance Equation of CTMC:
Consider a positive recurrent, irreducible CTMC. If there is a vector $P = (P_0,, P_n)$ satisfying the detailed
balance equations:
$1. \sum_{i \in n} P_i = 1$
2. $P_i * q_{i,j} = P_j * q_{j,i} \forall i \neq j, i \& j \in n$
Then <i>P</i> is the unique stationary distribution & the CTMC is time reversible. Note that if the time reversibility
satisfied, then the transition probabilities p_{ij} would be the same for the forward & backward process (same as
the discrete case).