MATH 303 Review Sheet:

General Total Law of Probability:
P ili 1
robability rules p(x) =Zp(x.y) = Zp(xl ») *p()
y y
Conditional Expectation:
EQO = Y E(XI) p(1)
y
Notes on some useful distributions:
1. If X ~ Binom(n,p),then E(X) =np , Var(X) =np(1 —p), f(x) = (Z) ®*AQ—-—p)™*
2.If X ~ Geom1(m), then f(x) = (1 —m)*m, E(x) = 1_Tn, Var(x) = 1;—:
3. If X~GeomO0(m), then f(x) = (1 — m)* 1m, E(x) = %, Var(x) = n;zn
Geometric Series:
Zw ark = ?
k=0 T 1-7
Binomial Theorem:
n
D Gy = )"
k=0
Markov Property | Foralln € N&X; €S, X;,,n > 0 is a Markov Chain when it satisfies:
PXns1 = Xns1lXo = X0, oo, X = X0) = P(KXng1 = Xpp1| X = %)
Literally, the next state only depends on the current state.
Homogeneous Forall x,y € S, ahomogeneous Markov Chain should have p(X,,+1 = ¥ |X,, = x) being the same for all states.
Markov Chain
For Homogenous MC: E(Xp 45| Xs =) = EXp | Xo =1), EXpl Xo =, X; =0) = EX,_1 | Xy = 1)
Chapman- m+n _ Z m o n.
Kolmogorov Pij 4 Pik * Pk,
equation n-step transition matrix: g™ = p"
Accessibility & 1. Accessible: S; is accessible from S; if there exists n € N such that pl-”j > 0.
Communication
2. Communicate: S; communicates with S; if S; is accessible from §; & S; is accessible from S;.
- Communication is an equivalent relationship (reflexive: S; communicate with itself, transitive, symmetric)
- All communicating classes partition the state space S.
- For an irreducible MC, there is only 1 recurrent communicating class.
Period of States Period of States d(i): greatest common divisor of n € N, p[; > 0.

- All States of the same communicating class share the same period (class property)
Aperiodic: a state or MC has a period of 1.

Recurrence &

Letf; =p(X,, =i, n>1,n € N| X, = i) (probability of return to state i if started from state i):

Transience 1. Ifstatei is recurrent, then we have: f; = 1
2. Ifstate i is transient, we have f; < 1
Proposition: Transience & Recurrence are class properties.
Proposition: for an irreducible, finite MC, the MC is recurrent
Number of Let N; =# (n > 0:X,, = i) U oo, N; denotes to number of visits to state i.

Returns (Visits)

Matrix Inverse:

If i is recurrent, we have:




[a b]_l p(N; = o | Xy =i)=1
d [ee]

L d ENXo =)= ) ply=1

ad-bcl—c q I n=0 ,

same for all other states in the same C; with i
pT: transition

matrix for all If i is transient, we have:
transient states.

- 1
{E(NilXO =1i) = ZPZZ’ =1-7, <
n=0 t

fi<1
same for other states in the same (;

S; j: mean Time (Number of Visits) to Transient state j starting from state i
, ~~—1
Sij = E(Nj|[Xo = i) = [(In - Pr) ]i].

Closedness A communicating Class is closed ifalli € C & j & C,p;; = 0.
Proposition: Finite, closed communication class is recurrent; communication class not closed is always transient.

Stirling o o n\™
Stirling Approximation: n! ~ v2nn (-
Approximation Fing Approxtmatt (e)
2n 2n! \/47Tn(2—n)2n 222" T (1-p)™ 22npn(1—p)"
2n _ ne1 _ )t = 2N onq )1 & e N _ )t o SNTETp Ump) p1-p
Poo = (n )P A-p)"=_—p"(1-p) —( 2nn(ﬂ)n)2p 1-p) — =
YNNI 2n 22 (1-p)"

Proposition: If }; pg’s < oo (converges), then ), — = <® (converges)

Random Walk is recurrent when p = % & dim < 2, else it is transient.
Positive Given a recurrent state i, let T; be the first time to revisit i after we started from i, we have:

Recurrence & m; = E(T;|Xo = 1)

Null Recurrence | m; is the mean time to return to state i.

1. iispositive recurrent if m; < oo (class properties, always true when MC is finite & irreducible)
2. iisnull recurrent if m; = oo (class properties, can only happen with infinite MC)

Stationary A vector is called the stationary distribution if it satisfies: (there can be more than 1 stationary distributions)
Distribution 1. m=npP
2. Zi T = 1
3.0 m; < 1
For an irreducible MC,

1. If = = mP has no solution, then MC is null recurrent or transient.
2. If m = P has solution, then MC is positive recurrent.

Ergodic: a state or MC is positive recurrent & aperiodic.
- For finite state MC, ergodic means recurrent & aperiodic

Big Theorem: For an irreducible, ergodic MC (if MC finite then irreducible & aperiodic):
1. There is a unique stationary distribution, i.e., one vector satisfying: m = wP, ¥; w; = 1 (from
irreducibility)
2. Limiting distribution is the stationary distribution: lim aP™ = m (from aperiodicity)

n—->oo
: . 1 : -
3. Mean time needed to return to state i: m; = - (from irreducibility)
L

# of visits to state i tilln

4.m; = lim

n—oo n

= long run proportion of time spent at i (from irreducibility)

Doubly Stochastic | P is called doubly stochastic if its columns also sum up to 1. If a MC is doubly stochastic, then it has the
Markov Chain

following stationary distribution: 7 = (T; ... Ty) = (% %)




Time-Reversable
Markov Chain

A Markov chain is time reversable if:
Q-7
T
4ij = DPji *; = Dij
l
Detailed Balance Equation (to prove time reversibility & find stationary distribution):
XiPij = XjPji, X = {X1 veeXn}

Xi=1

i
If satisfied, x is the stationary distribution & MC is time reversable.

Generating
Functions

For a random variable ¢ € {1, 2,3, ...}, its generation function Gg(s) satisfies:

Gx(5) = E(s) = ) s/p(¢ =)

720

Properties of Generating Functions:
1. If X & Y are independent random variables, then Gy, y(s) = Gx(s) * Gy(S)
2.LetT =X; + X, + Xy = YN, X;, such that all X; are independent & follow the same distribution, then
suppose N is independent from all X, we have:
Gr(s) = Gn(Gx(s)) = Gn(s) ° Gx(s)
3. Implication: Gz (s) = Gn(s) = G,(Gx(s))

Some Derivations from Generating Functions:

1.Gx(0) = G(0) = Xjnos’p(X=/),s =0 =p(X =0)

2.6x(1) =G(1) = Tjzos'pX =)),s =1= Tjzop(X =)

3.Gx(s) = Xjj*s''p(X = ))

4.6y (D) =X;j*s'p(X =)),s=1= Zjsoj* 1*p(X =) = E(X)

5.G6(s) = Xjj*(—D*s/?pX =)

6.6y (D =Xjj*(—D*s/?pX=)),s=1=Xjj*(-D*1+pX=)) = X;j*p(X =)) -
Yjz0/p(X =) = E(X?) — E(X)

Expected Values & Variance of X in relation to its generating function:
1.E(X) = Gx'(1)

2 2 2 2 " / / 2
2.Var(X) =EX?) —(E(X)) =EXH-EX) +EX) — (E(X))" = G¥ (1) + Gx(1) — (Gx(1))
How to Find p(X = k):

1. Look at the coefficient before S*

RO
2. Generally, p(X = k) = XT

Branching
Process

Branching Process models (Z;,),,»0: the population at generation n with assumption that Z, = 1. X is a random
variable to having the distribution of the number of offspring an individual can have.

Properties at the Branching Process:

1. MC is (Z)ns0

2.5={0,1,2,3,...} EN

3. Absorbing State (recurrent state): S = 0 (extinction)
4. Transient states: S & 0

Generating Function of the Branching Process:
1.Gz,(s) =Gp(s) =G (G (G(..G(s)))),n compositions
2. Gpin(s) = Gm(Gn(S)) = Gn(Gm(S)) = Gy (s) © Gu(s)

(k)
3.p(Z, =k) = G"T'(O) = coef ficient of s¥

Mean & Variance of Z,,;:
Letu = E(X),0? = Var(x), then:




LE(Zy) = p"
no?, whenu=1
= 20,M_ n-1
2.Var(Z,) o2 (u"-1)u | whenpu %1
u—-1
Probability of Extinction:
1. Extinction at generation n: {Z,, = 0}, Extinction by Generation n: {Z,, = 0}

3. Probability of Extinction: p(Z,, = 0) ; Probability of Eventual Extinction: lim p(Z, = 0) = lim G, (0)
n—-oo n—-oco

4. Theorems:
p(eventual extinction) = n should satisfy the following conditions:
i. 7 is the smallest non-negative root of G(s) = s
ii. Ifu <1,thenn =1 (this means on average every individual cannot produce an offspring, thus the
total population is shrinking at every generation, which means it will eventual go extinct)
iii. Ifpu>1,thennp<1
iv. Ifu =1, then:
a. Ifo? =0,thenn = 0. (Z, = 1 forall n)
b. Ifo? >0,thenn =1

Exponential
Distribution

We call X an exponential random variable with parameter A > 0, X ~ Expon(4) if X has the following density:

_ (le™™™ x>0
f(x)_{o, x<0

1. Distributional Rules of Exponential Random Variables: Suppose X ~ Expon(4)
. 1
1. E(X) = Z )
ii. Var(X) = =
— ([ jp—Ax — L\ (pAro _ p-ast _1 _ o Mt) — At
iii. pX>t)= [ Ze —/1*( A(e ) =2+ x(—e M) =e”

2. Properties of Exponential Distributions:
i.  Memoryless Property: suppose T ~ Expon(A)
a.p(T=>t+s|T=s)=p(T=t)
b.p(T<t+s|IT=2s)=1-p(T=2t+s|T=2s)=1—p(T=t)=p(T<t)
c. Due to the memoryless property, suppose we have 3 people (A, B, C) all being served with time
T~ Expon(A) with two people (A, B) being served first, then suppose A left first, the probability of C

leaving before B is p(T; < Tg) = % = % (note that this is because when A left the remaining time of B
being served is still Expon(A)).

ii.  Minimum of Exponential:
Suppose X ~ Expon(A,),Y ~ Expon(A,), such that X & Y are independent, Z = min(X,Y), then we
have:
p(Z=t)=pmin(X,Y) =t) =p(X >t,Y >t) = e-atha)t
Thus, Z ~ Expon(A; + 1,)

iii.  Probability of Comparing two exponential random variables:
Suppose X ~ Expon(A,),Y ~ Expon(4,), such that X & Y are independent, then:

X>Y)= M
p L+
Y >X) = e
p L+

iv.  Sum of iid exponential random variable follows a gamma distribution:
a. Gamma Distribution: Suppose X ~ I'(n, 1)
le~t(ap)n1 n n
fx) = (n-1)! ,t=0, E(X)=I, Var(X)=ﬁ
0, t<o0




b. Let X1, X5, ..., X, be iid exponential random variables, then X; + X, + -+ 4+ X~ '(n, 1)

Poisson Process:

Poisson Distribution: suppose X ~ Pois(A):

e_k/lk
Lp(X =k) =" 2. E(X) = 1,3.Var(X) = 2

Poisson Process:
The homogeneous Poisson Process with rate A is a counting process N (t);s( satisfying:
N(t) = max{n | X, T; < t}, T; are inter-event time such that T; ~ Expon(A)
—At k
i, N()~ Pois(at), p(N(t) = k) = =2 E(N(D) = Var(N(D) = At
Second definition: A counting process N (t);s¢ is a rate A Poisson process if:
i.  Increments are independent: N(s) — N(t) & N(u) — N(v) are independent.
ii. p(N({t+h)—N(@)=1)=2Ah+o(h)
iii. p(N({t+h)—N(t)=2)=o0(h)

Properties of Poisson Process:

1. Let Ny (t)¢s0 & N, (t):s0 be independent Poisson processes with rates A; and A,. Let N(t) = N;(t) + N,(t),
then we know N (t)¢s¢ is a Poisson process with rate 1, + 4,.

2. Conditioned on 1 event happens between [0, t], then the probability of the occurring before any time between

the interval s € [0,t], p(T; < S|N(t) =1) = % ~unif (0,t). (Distribution of the conditional first arrival time
is uniform).

3. Theorem: Let N(t):»( be a Poisson process. Conditioned on N(t) = n, the n arrival times S;, S5, ..., S, have
the same distribution as the order statistics corresponding to n iid unif (0, t) random variables.

n
f(S]JSZI ---;SZ| N(t) = n) = t_n

Poisson Thinning:

1. Homogeneous Poisson Thinning:

Let N(t) ;s be a rate A Poisson process and suppose its events are independently Type 1 with probability p and
Type 2 with probability 1 — p. Then, let N; (t) be the number of type 1 events & N, (t) be the number of type 2
events, we know N, (t) & N,(t) are independent Poisson processes with rates pA & (1 — p)A respectively.

2. Non-homogeneous Poisson Thinning:

Let N(t);s( be a rate A Poisson process & suppose each of its events are classified independently by k types
such that the occurrence of event i € k at time t has the probability of p;(t). Then, let N;(t) be the number of

occurrences of type i by time t, Ny (t), ..., N (t) are independent Poisson processes with rate 4; = 4 fot pi(s)ds.

Continuous Time
Markov Chain
(CTMT)

Let {X(t):t = 0} be a collection of random variables, each taking values in N. We say {X(t):t = 0}isa
continuous time MC if for all s,t = 0,i,j € N, for all {x(u) € N:u € [0, s]}, the Markov property is satisfied:
p(X(s +1t) =jIX(s) = i, {X(w) = x(u) forallu € [0,s]}) = p(X(s + £) = j|X(s) =)

Properties of CTMC:
i.  Time Homogeneity: p(X(s +t) = j|X(s) = i) = p(X(t) = j|X(0) = i)
ii. Inter-arrival time T; ~ Exp(v;)
iil. Parameters of CTMC: Pij; v, qU = pijvl-, Pii = 0
iv.  Irreducible CTMC: suppose x,y € S, then x, y communicate if p, ,,(t) > 0 & p, ,(s) > 0 for some
s,t = 0. The CTMC is irreducible if there is only 1 communicating class.

Chapman Kolmogorov Equations in CTMC: p;;(s + t) = Ykes Pk (t) * Din(s)

. , 0ifi+]

Kolmogorov Backwards Equations: p;;(t) = Xkxi quPk;(t) — vipi;(£),pi;(0) = {1 i; i =§'
., 0if i+
Kolmogorov Forwards Equation: p;; () = Xk=j P (0)qr; — vjpij(t) ,pi;(0) = {1 ifi=]

—vifi=j

Forming the Matrix Q: @;; = {Qij = vy if i %]

Solving Differential Equations:




1. Some rules regarding to solving differential equations:
i. Iff'(x) =ax*f(x),then f(x) = C * e**, for some constant C € R
2. Procedures of Solving Simple Differential Equations:
i.  Suppose given f'(x) =ax* f(x)+b,f(d) =v b,a,d,v € R, then we write f(x) = f;(x) + fo(x)
ii.  Then by solving f; (x) using the rules above, we get: f;(x) = C *e®*,C €R
b

iii.  Given that f,(x) is assumed to be constants, we have f,(x) = 0 =a * f,(x) + b, fo(x) = — "

iv.  Using the f(d) = v to solve for C:
b
v+

b
Cxed —— =y, C = da
a e

Using the balance equation to find the limiting Probabilities: P = (P, ..., B,)
1. Balance Equation: v;P; = Y+ qrjPr, Xj P =1
2. Theorem: For a recurrent, irreducible CTMC,

i.  The limiting probabilities P exist.

ii. P is the long-run proportion of time that CTMC is in state i

Birth & Death Process:

Let {X(t),t = 0} be a birth & death process with the associated birth rate: A;, i € N and death rate y;,i € N,
then we have the following parameters:

1. v; = p; + A; because the time between events T; ~ min(Expon(4;), Expon(u;)) ~ Expon(A; + p;)
i.  Note: vy = 4, because there’s no death at 0.
2.Diji+1 = p(Expon()l ) < Expon(.uz)) = /1 — - qii+1 = Vi *Pii+1 = (wi +49)

3. Pii-1 = p(Expon(u;) < Expon(2,)) —_w Qiji-1 = Vi *Piima = (i +4;) *

u+/1

2, M
Solving for Limiting Distribution of Birth & Death Process:
Using the balance equation, we have:

A
1.v0P0=q1,0P1—>10P0=M1P1—>P1=”—:P0
A
2-U1P1=QO,1P0+QZ,1P2—>(/11+H1)P1=/10P0+.U2P2—’(A1+M1)P1=#1P1+#2P2_’P2=u_zP1

— An-1 — ?:_01 Ai n-1 Az
3. b =——=P 1 =77 —*Po, = [0
HUn i=1 Mi “l+1

Using the fact that }};c, P; = 1, we have'
n
4. YienPi = X201Pp=1-> Py = c5— suppose all A; & p; are the same, )72 1, (l) = %
i= 0 -
Two Cases:
i. IfY21 = oo, then we do not have the limiting distribution which means that this CTMC is null
recurrent or transient.
ii. If}2,7; < oo, then the limiting probability exists.

Stationary Distribution of CTMC P = {P;, .. P,}: we can also use the balance equation to find it, or to save time
using the detailed equation to get the stationary distribution & reversibility.

Embedded Chain:
Based on the CTMC {X(t): t =} with transition probabilities p;; & rates v;, we construct the embedded (discrete
time) MC {Y,;:n = 0,1, ... } such that ¥;, = nth states that X (t) jumps to = X(S,,) where S,, is the time of the nth
jump.
1. Properties of the Embedded Chain:

i.  Transition matrix P: (P) = pij

ii.  Ifthe embedded chain is 1rreducible & finite, then we know that the corresponding CTMC is positive
recurrent & irreducible such that it satisfies the limiting distribution theorem above.
iii.  Suppose & = (my, ..., ) is the stationary distribution for the embedded chain and let Z = Zien% < oo,
L
Ty

then the stationary distribution for the original CTMC: P; = ; * —

Vi




Detailed Balance Equation of CTMC:

Consider a positive recurrent, irreducible CTMC. If there is a vector P = (P, ... B,) satisfying the detailed
balance equations:

L YienPi=1

2Pl*ql,j =Pj*Q},l qut],l&]En

Then P is the unique stationary distribution & the CTMC is time reversible. Note that if the time reversibility
satisfied, then the transition probabilities p;; would be the same for the forward & backward process (same as
the discrete case).




