CPSC 406 Study Sheet:

Linear Least
Squares:

Setting: A: (m,n) m > n overdetermined system, b: (m, 1), x: (n, 1)

Objective Function: min||b — Ax||2 = min{||r||2|Ax +r= b}
x X

i.  rcan be treated as residuals such that r € Range(A)
ii.  In general, there is no solution to the system unless 7 = 0 or Ax = b
iii.  If Rank(A) # n, namely, A has linearly dependent columns, then the solution will not be unique (but
the min value will be unique)

Solving the Linear System:
1. Normal Equations: ATAx;; = ATh - x;; = ATA\ATb OR x;;, = (ATA)"1ATb
i. A is assumed to be a non-singular matrix, in other words, A is assumed to be full rank.
y)
ii.  Issues: Cond(ATA) = ;‘L(ATA) might be big causing huge errors: Precision = 16 — log(Cond (A" A))

min(AT 4)

2. Using QR decomposition:
R _
A=QR=(Q Q)(}), Runs=0Qfb —x = RiQ]b
i.  Qq:(m,n) is the orthogonal basis of Range(A), found using the gramma-Schmidt.
ii.  Q,:(m,m — n) is the orthogonal basis of Null(AT), use gramma-Schmidt to enforce orthogonality.
iii. Ry :(n,n),R:(m,n) are both upper-triangular matrices.
1v. A= QlRl
v.  Better than normal equation because the solution has cond (R;) which has less errors. Precision =
Amax
16 —log(Cond(R;)), cond(R,) = cond(A) = Cmax(4)

Amin(A)

Regularized Least
Squares:

Regularization: using prior knowledge (smoothness here) to regularize data:
Objective Function: min% | |Ax — b |2 — Af(%)
X

Pareto Frontier: the points below the frontier are possible & the points above are not.

Tikhonov Regularization: to promote smoothness & reduce noise.
1. Objective Function:

. 5 5 A b 2 xlsz 1 -1 ..
min||4x — bI|” + 2| Dx]| =“(ﬁD>x—(0)” , Dx = - Dp=[0 1 -1

-1~ Xn

2. Solution to Tikhonov Regularization:

reo=2+(()r-0)- ()e)

Vf(x) =2 * (ATAx + AD"Dx — ATb)
ATAx + ADTDx — ATh = 0
ATAx + ADTDx = ATh
x = (ATA+ ADTD) 14Th

Gradient

Directional Derivatives:

1. f'(x,d) = Vf(x) xd

2. f'(x,ad) = aVf(x) *d

3. Suppose e; are the unit directions in R™, f'(x, e;) = [Vf(x)]; is the ith element in the gradient.

Nonlinear Least
Squares

1. Objective Function: min% | |7 (x)| |2, r(x) =Ax—»b
X

2. Using the Gauss-Newton Method to solve:
i.  Start from an arbitrary point: x;
ii. Fork=0,12..n
a. Linearize the residuals at kth iteration: 7 (x) = r(x}) + J(x;) (x — x3) + 0(| [x — x| |)
b. Find x;.; by minimising the linearized residuals:




1 2 1
s = argming (5| @] ) = argmin (5 |IrGoo) + 1) G = 2017
JCadx =1 () — J () xi
Xa1 = J I\ () — J () xi), J (i) = Vr ()"
OR Xpy1 = Ap\by, Ar =](xx), by = 1(xp) — J Cxpe)xe
2 .
C. If||xk+1 — xk|| < g, exit the loop.
ii.  Return xj44.

3. Optimality: x* is a local min if
i.  Necessary conditions: 1. Vf(x*) = 0, 2. V,f(x*) = 0 (Hessian is semi-positive definite)
ii.  Sufficient conditions: 1. Vf(x*) = 0, 2. V,f(x*) > 0 (Hessian is positive definite)

4. Coerciveness & Unboundedness:
i.  Coerciveness: l|im f(x) = oo, this implies that there is a minimum.

||x |—>oo
ii.  Unboundedness: ! lhm f(x) = —oo, this implies that there is no minimum.
X||—00

Gradient Descent:

Step Size Selection:
i.  Constant Step Size
a. Using Lipschitz Community of Gradient:

IV () = VEDI| < Llx = yl|
b. L= ||A|| = AMAX(A)
2 2
c. ae [O'Z = AMAX(A)]
ii.  Exact Line Search
a. May not always work but always work for quadratic functions.
b _ —Vf(x)Td
: ~ dTad
iii.  Backtracking Line Search:
a. Choose a such that f(x;) — f(x, + ady) = —uaVf(x;)dy

Algorithm: While (x;) — f(xy + ady) < —puaVf(x;)dy: a = fa

Search Directions: Vf(x,d) < 0, Steepest Descent: d = —Vf(x,d)

Descent Algorithm:
1. start from x,
2.Fork=0,1,..,n:
i.  Compute search direction dj,
ii.  Choose Step size a;, using one of the three methods above.
. Xppq = X + ady = x, — aVf(x;) (If using steepest descent).
iv.  Exit when ||Vf (x| < €
3. Return xj 4 4.

Newton’s Method:
1. start from x,
2.Fork=0,1,..,n:
i.  Compute search direction dy, V,f(x)d = —f(x;) (using Newton’s direction, convergence require
Vof(x) >0

ii.  Choose Step size a;, using one of the three methods above.

. Xpyq = X +ady

iv.  Exit when ||Vf(xk+1)|| <e
3. Return x4 4.

Scaled Descent:
1. start from x,
2.Fork=0,1,..,n:
i.  Choose Step size a;, using one of the three methods above.




S 0 0
ii. xk+1=xk—aDVf(xk),D=SST,S=(O 0),x=sy

iii.  Exit when ||Vf(xk+1)|| <e¢
3. Return x4 4.

Positive
definiteness &
Cholesky
Factorization

Positive definite matrix:
Matrix A: (n, n) is positive definite if for all column vectors x: xTAx >0

Properties of Positive Definite Matrices:

1. For any full rank matrix X, if A is positive definite, then X7 AX is also positive definite.
2. If a matrix has all positive eigenvalues < the matrix is positive definite.

3. A is positive definite <> A has Cholesky Factorization.

4. A is positive definite — the first entry a,; of 4 is positive: a;; > 0

Cholesky Factorization:

T
1.A= (all M]/( ) , @11 1s the first top left entry of A, w is the remainder of the first column.
w

1 0
Y 0 r\(a WT/a _ wwT . .. .
2.A= (W/a I) <0 k— vzvlv1 ) (0 | ), k = is also positive definite.

Linear Constraint

Setting: A: (m,n), m < n: underdetermined system, fewer equations than variables

Objective Function: né}gr}l f(x) subjtoAx =b
X

Feasible Sets: F = {x |[Ax = b} ={Xx+2zp|p € R™ ™}
i. X isaparticular solution such that Ax = b, Az = 0,< AT,z > =0 — z € Null(A)
ii. Range(z) = Null(A) 1 Range(AT), Null(z") = Range(AT)

Reduced Problem: Erqulin f(x + zp), suppose p* is the optimal solution, x* = X + zp™ :
p n-m

i.  Optimality condition:
Vof(X+2p")=0-0=2"Vf(x*) » 0 =<zx">-x* € Null(z") = Range(A")

First-Order Necessary Conditions:
A point x* is a local min of rgliqn f(x) subj to Ax = b only if there exists a vector y € R™:
X n
i.  Optimality: Vf(x*) = ATy o Vf(x*) € Range(AT) o zTVf(x*) =0 o Vf(x)Tp=0,Vp €
Null(z)
ii.  Feasibility: Ax* = b

Second-order Optimality:
1. Second-order necessary conditions:
i.  Optimality: Vf(x*) = ATy o Vf(x*) € Range(AT) o zTVf(x*) =0 o Vf(x)Tp=0,Vp €
Null(z)
ii.  Feasibility: Ax* = b
iii.  zTVyf(x")z=0 o p'Vyf(x*)p = 0,¥p € Null(z)

2. Sufficient conditions: all the same except for: z'V,f(x*)z > 0 o pTV,f(x*)p > 0,Vp € Null(z).
Conditions changed from semi-positive definite to strictly positive definite.

Convexity

Convex Sets:

Aset C € R™ is convex if for any points x,y € C and any 1 € [0,1],
Ax+(1-A)yecC

Examples of Convex Sets:

1. Affine/line is convex: L = {z+ td [t E R}, z € R™",d # 0 € R™

2. Hyperplane: Hy g = {x € R"|a"x = B}, a ER" # 0, €ER

3. Half-space: Hy g = {x € R"|a"x < },a € R" # 0, € R

4. Norm Ball: {x € R"| ||x — c|| < r}, ¢ € R™ is the center, r € R is the radius.

5. Convex Hulls of a set: Conv(s) = {¥¥ ; 4x; | x; €S, T4, =1,k €N}




6. Simplex: A,={x € R™ | Y-, x; <1,k € N}
7. Unit Simplex: A,= {x € R™ | X1-,x; = 1,k € N}

Set Operations that Preserve Convexity:

1. intersections of convex sets are convex

2. Additions of Convex sets are convex

3. Image: If C € R™ is a convex set & matrix A: (m,n), then A(c) = {Ax|x € C} is also convex.

Convex Functions:
A function: f:C € R™ = R, C is convex, is convex if:

fAx+ A -Dy) <Af () + (A -Df ()
Strict convex: f(Ax + (1 —D)y) < Af(x) + (1 -V f(y)

Common Convex Functions:

1. Affine/line function: a”x + B for some a € R™, § € R (convex & concave)

2. Exponential: e®* for any a € R

3. Powers: x* on R, , forall a > 1 or a < 0, Note that when 0 < a < 1 the function is concave

4. absolute value: [x|?,p > 1

5. Negative entropy: xlog(x) when x € R, .

6. Norms: all the norms are convex; proved using the triangular inequality: ||x + y|| < [IxI| + |I¥]

Function Operations that Preserve Convexity:

1. Non-negative multiplies.

2. Sum of the convex functions are also convex

3. Composition of convex functions with an affine function is also convex: i.e. ed X+h

Theorems to Prove Convexity of Functions:

1. Let f: C — R be continuously differentiable over C € R™, then f is convex iff:
f)+Vf(x)(z—x) < f(2),Vx,z€C

2..Let f:C = R be continuously twice differentiable over C € R™, then f is convex iff:

V,f(x) = 0 - Pos.def

Convex Optimality:

1. For a convex function, if x* is a local min, then it’s a global min.

2. Unconstraint case: Optimal - Vf(x*) =0

3. Constraint case: Vf(x*)T(x — x*) = 0,x € C (all feasible directions are non-decreasing).
i.  Inother words: —Vf(x*) € N.(x*),N,(x*) ={g € R" |gT(z—x) <0,z € C}
ii. o —Vf(x*) € Range(A")

Projection

Projection Theorem: proj.(x) = g(z) = melél%Hz - x||2
z
1. If the objective function is convex then projection is unique.
2.If x € C, then proj.(x) = x
3.-Vg(z) =—(z—x)=x—2z€N:(2),N.(z) ={g e R" |gT(c —2) <0,z € C}

Projected Gradient Method:
1. start from x,
2.Fork=0,1,..,n:
i.  Choose Step size a;, using one of the three methods above.
i Xpeyr = proje(x — ax * Vf (x)
iii.  Exit when ||x — xp4ql| < €
3. Return xj 4 4.

Stationarity of Projected Gradient:
x* € argmin,cf (x) with C closed & convex, the f: R™ — R is convex differentiable if and only if:

x* = proj(x" — @ * Vf(x"))




Convergence of
Gradient Descent:

Linear
Programming

Geometry of Linear Programming:
a
Suppose we have a polyhedron: P = {x | Ax < b},A=| i |,A:(m,n) m < n. Polyhedrons are convex
am
because they are intersections of half-spaces.
1. Equivalent Concepts:
i.  Extreme points: x € P is an extreme point of P if there does not exist two vectors y, z € P such that:
x=Aly+1-1z
ii.  x € P is a vertex of P if there exists aa vector ¢ # 0 such that:
cTx<cly, Vyepy#x
ili.  x"isabasic solution if a; 1, ..., a; ,, are linearly independent <> Bx* = by < Rank(B) =n
Settings: A = (B N) where B: (m,m) is a basis of A, let the indices in B be = {iy,..,ix}, by =
b;,
b,
a. Active Constraints: al x* = b;,i € 8
b. Inactive feasible constrains: aiT <b;,i€N
c. Inactive infeasible constraints: az"x* >b;,i¢B UN

Properties of Polyhedron:
1. P contains a full line & P has no extreme points
2. P isunbounded < P contains a half-line.

Converting Generic Polyhedron to Standard Form:
Suppose we have a generic polyhedron P = {x | Ax = b, Cx < d} & we want to convert it to standard form:
p ={x| Ax = b,x = 0},b = 0, the following steps should be taken:

1. Ensure that all converted b; € b are positive:
i.  Forany b; < 0 in generic form Ax = b, replace a;x; = b; — (—a;)x = (=b;)
ii. Ford; <O0,replacec/x <d; » —cfx>—-d;, cfx>d; > —clx< —d;

2. Converting Free Variables x; (x; has no constraints):
xi=x;—x{,x{ =20&x{' =0
i.  x{ encodes positive part of x;, x; encodes the negative part of x;
ii.  Optimal solution must have x; * x;' = 0

3. Using Slack & Surplus to Convert Inequality Constraints:
i. Replacec/x<d; »cfx+s;=d;,s;=0
ii. Replacec/X>d; »c/x—s;,=d;s; =0

Basic Solution in Standard Form:
1. Setting: n variables, m + n constraints (m equality constraints from Ax = b, n inequality constraints x = 0)

2.Ax = (g ]}l) (iﬁf{) = (g),x,v =0,Bxg = b,B:(m,m),A=(nn),N=(n—-—m,n—m)

3. Solution is degenerate if some elements in x5 is also 0.




Simplex Method:
Assumptions: problem in LP standard Form:
mincTx subj Ax = b,x >0
X

Simplex Method:
Start with basic variables with indices B = {f;, ..., Bm} (X;ep are nonzero) and non-basic variables N =

c
{n,,..np_m}suchthat A = [B,N],c = (Cfl)

1. For each iteration: k = 0, ..., n:
i. Compute Bxg =b — xp
ii.  Compute y suchthat BTy =c5 —> y
iii.  Calculate reduced cost: zy = cy — NTy — Z,, choose the most negative entry n, in Z, to enter the

basis.
iv.  Solve Bdg = —ay,
X
v.  Kick the basic variable with index: ¢ = argmingeq,. m¢ a pg<0 %

vi.  Form the new basic & non-basic basis & start over again.

Optimality: No improving directions exists for each j = 1, ..., n such that
xj =0&z =0 OR x; = 0 &z = 0 (Must hold for basics)

Duality

Primal Problem:
minc’x subjtoAx =b,x >0
X

i.  nvariables, m constraints (because A is m X n,n > m, underdetermined)
ii.  Suppose optimal x*, then the unique optimal value would be p* = cTx*

Dual of the Linear Problem:
maxbTy subjtoc—ATy >0
y

In standard form:

max b’y subjto ATy +z=1c¢,2>0
vz
i.  We applied “slack & surplus method” to obtain the value of z such that z = ¢ — ATy

Derivation of the Dual of the Linear Problem:
1. Consider the relaxed version of the primal problem (by converting the constraint to a price of violation)
Relaxed Problem: mincTx + yT (b — Ax) subj to x > 0, y: price of violating constraints
X

i.  Relaxed problem provides a lower bound for optimal value p* (by definition)
ii.  Dimensions: A = (m,n),x = (n,1),b = (m,1),y = (m, 1)
.  gy) = migl{ch +yT(b—AX)} < cTx* +yT(b— Ax*) = cTx* = p*
x=
iv.  yT(b — Ax*) cancelled out because Ax* = b by constraint.
2. Then by simplifying g(y) as a function of y, we obtain:
9G) = min{c"x + T (b~ Ax))
X2
= migl{ch +yTh — yT Ax}
X2
=yTh + mi(r)l{ch — yT Ax}
p
=bTy+ mi(r)l{xT (c — ATy)}, dimension of two parts here are (1,1)
x=
=bTy+ mi(r)l{xT(c — ATy)}
p
:{bTy ifc—ATy >0

g If c — ATy < 0, then I can choose x arbitrarily such that g(y) » —oo
—oo otherwise

Weak Duality:
Suppose x is primal feasible (constraints for primal problem satisfied: Ax = b, x = 0) and (y, z) is dual feasible
(constraints for dual problem satisfied: ATy + z = ¢,z = 0), then the primal objective is bounded below by the
dual objective:

cTx=WATy+2)x=yTAx+zTx =y"b+2zTx > y"h, z>0
Weak Duality Theorem:
If (x,y, z) is primal/dual feasible, then for value p:




i.  the primal value is an upper bound for the dual value.
ii.  the dual value is a lower bound for the primal value.

Complementarity:
The bound is tight (primal value = dual value) when x & y are complementary, namely x”z = 0:
xi=0&2 =20 orx;=20&z =0

Optimal Conditions:

1. Simplex maintains primal feasibility at every iteration: Ax = b,x = 0

2. Method defines y via BTy = cg, z = ¢ — ATy & maintains complementarity: x5 > 0 & zz = 0 and xy =
0&zy >=<0.

3. Exit when z > 0 such that (y, z) is dual feasible: ATy +z = ¢,z = 0

Strong Duality Theorem: if an LP has an optimal solution, so does it dual, and then optimal values for dual &
primal problems are equal.

Theorem: the primal-dual triple (x, y, z) is optimal iff
1. Primal Feasible: Ax = b,x = 0

2. Dual Feasible: ATy +z=¢,z> 0

3. Complementarity: xTz = 0

Matrix Game:

Let matrix A denotes to the amounts that Y pays X such that a;; represents the specific amount by X taking

strategy j & Y taking strategy i.
all CEE} aln
A = E " S ’A = (m, n)

Am1 - Anm
X strategy: Choose x subject to eTx = 1 OR Z};l xj =1

Y strategy: Choose y subjectto e’y =10R Y, y; =1
Total Expected Payoff: yTAx = Y1, Z?zl a;jx;yi

Player Y’s analysis:
Suppose Y chooses y as his strategy, then X will best defend by choosing x to maximise the expected payoff:
maxyTAx subjtoeTx=1,eTy=1,y>0,x=0
X

Then, Y should choose y to protect against the worst possible case when X knows what Y will do: given vy,
min(maxy”Ax) < max(y"A);
y o ox Jj

1. Solving for Y’s strategy:
i.  From LP theory, a basic optimal solution exists implies that x* only has 1 nonzero component = 1.
(Because there is only 1 equality constraint for inner problem x)
ii.  Original Problem: myin(m;lx yTAx) subjtoe’y =1,y >0

iii. ~ Reformulate as an LP: minv subj to ve > ATy,eTy =1,y >0
y,v

Player X’s strategy: max (min yTAx) subjtoe™x=1,eTy=1,y>0,x=>0
x \y

i.  Similarly, y* only has 1 nonzero component (=1)
ii.  Reformulated problem: mzjllxl subjtole < Ax,eTx=1,x>0
x,

MiniMax Theorem: A = v, namely X’s worst-case expected win = Y’s worst-case expected loss.
i. X & Y analysis are dual pairs such that their optimal values should be the same (by strong duality). X’s
the primal problem & Y is the dual problem.




