CPSC 406 Study Sheet:

Linear Least	Setting: $A: (m, n) \ m > n$ overdetermined system, $b: (m, 1), x: (n, 1)$
Squares:	
	Objective Function: $\min_{x} b - Ax ^2 = \min_{r,x} \left\{ r ^2 Ax + r = b \right\}$
	 i. r can be treated as residuals such that r ∉ Range(A) ii. In general, there is no solution to the system unless r = 0 or Ax = b iii. If Rank(A) ≠ n, namely, A has linearly dependent columns, then the solution will not be unique (but the min value will be unique)
	Solving the Linear System: 1. Normal Equations: $A^T A x_{ls} = A^T b \rightarrow x_{ls} = A^T A \setminus A^T b$ OR $x_{ls} = (A^T A)^{-1} A^T b$ i. A is assumed to be a non-singular matrix, in other words, A is assumed to be full rank. ii. Issues: $Cond(A^T A) = \frac{\lambda_{\max(A^T A)}}{\max(A^T A)}$ might be big causing huge errors: $Precision = 16 - \log(Cond(A^T A))$
	$\lambda_{\min(A^TA)} = \lambda_{\min(A^TA)}$
	2. Using OR decomposition:
	$A = QR = (Q_1 Q_2) \begin{pmatrix} R_1 \\ 0 \end{pmatrix}, \qquad R_1 x_{ls} = Q_1^T b \to x_{ls} = R_1^{-1} Q_1^T b$
	i. $Q_1: (m, n)$ is the orthogonal basis of $Range(A)$, found using the gramma-Schmidt. ii. $Q_2: (m, m - n)$ is the orthogonal basis of $Null(A^T)$, use gramma-Schmidt to enforce orthogonality. iii. $R_1: (n, n), R: (m, n)$ are both upper-triangular matrices.
	1V. $A = Q_1 R_1$ v. Better than normal equation because the solution has $cond(R_1)$ which has less errors. <i>Precision</i> = $16 - \log(cond(R_1))$, $cond(R_1) = cond(A) = \frac{\lambda_{\max(A)}}{\lambda_{\min(A)}}$
Regularized Least Squares:	Regularization: using prior knowledge (smoothness here) to regularize data:
	Objective Function: $\min_{x} \frac{1}{2} Ax - b ^2 - \lambda f_2(x)$
	Pareto Frontier: the points below the frontier are possible & the points above are not.
	Tikhonov Regularization: to promote smoothness & reduce noise. 1. Objective Function:
	$\min_{x} Ax - b ^{2} + \lambda Dx ^{2} = \left \left \begin{pmatrix} A \\ \sqrt{\lambda}D \end{pmatrix} x - \begin{pmatrix} b \\ 0 \end{pmatrix} \right \right ^{2}, Dx = \begin{pmatrix} x_{1} - x_{2} \\ \vdots \\ x_{n-1} - x_{n} \end{pmatrix}, D = \begin{pmatrix} 1 & -1 & \dots \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$
	2. Solution to Tikhonov Regularization:
	$ abla f(x) = 2 * \left(\begin{pmatrix} A \\ \sqrt{\lambda}D \end{pmatrix} x - \begin{pmatrix} b \\ 0 \end{pmatrix} \right) * \left(\begin{pmatrix} A \\ \sqrt{\lambda}D \end{pmatrix} x \right)^T$
	$\nabla f(x) = 2 * (A^T A x + \lambda D^T D x - A^T b)$ $A^T A x + \lambda D^T D x - A^T b = 0$
	$A^{T}Ax + \lambda D^{T}Dx = A^{T}b$ $x = (A^{T}A + \lambda D^{T}D)^{-1}A^{T}b$
Gradient	Directional Derivatives: 1. $f'(x, d) = \nabla f(x) * d$ 2. $f'(x, ad) = a \nabla f(x) * d$ 3. Suppose e_i are the unit directions in \mathbb{R}^n , $f'(x, e_i) = [\nabla f(x)]_i$ is the <i>i</i> th element in the gradient.
Nonlinear Least Squares	1. Objective Function: $\min_{x} \frac{1}{2} r(x) ^2$, $r(x) = Ax - b$
	 2. Using the Gauss-Newton Method to solve: i. Start from an arbitrary point: x₀ ii. For k = 0,1,2, n: a. Linearize the residuals at kth iteration: r^k(x) = r(x_k) + J(x_k)(x - x_k) + o(x - x_k)
	b. Find x_{k+1} by minimising the linearized residuals:

	$x_{k+1} = argmin_{x}\left(\frac{1}{2}\left \left r^{k}(x)\right \right ^{2}\right) = argmin_{x}\left(\frac{1}{2}\left \left r(x_{k}) + J(x_{k})(x - x_{k})\right \right ^{2}\right)$
	$J(x_k)x = r(x_k) - J(x_k)x_k$ $x_{k+1} = J(x_k) \setminus (r(x_k) - J(x_k)x_k), J(x_k) = \nabla r(x_k)^T$ $OR x_k = -A_k \setminus b_k A_k = J(x_k) \cdot b_k = r(x_k) - J(x_k) \cdot x_k$
	c. If $ x_{k+1} - x_k ^2 < \varepsilon$, exit the loop. iii. Return x_{k+1} .
	3. Optimality: x^* is a local min if
	i. Necessary conditions: 1. $\nabla f(x^*) = 0$, 2. $\nabla_2 f(x^*) \ge 0$ (Hessian is semi-positive definite) ii. Sufficient conditions: 1. $\nabla f(x^*) = 0$, 2. $\nabla_2 f(x^*) > 0$ (Hessian is positive definite)
	 4. Coerciveness & Unboundedness: i. Coerciveness: lim f(x) = ∞, this implies that there is a minimum.
	ii. Unboundedness: $\lim_{ x \to \infty} f(x) = -\infty$, this implies that there is no minimum.
Gradient Descent:	Step Size Selection: i. Constant Step Size
	a. Using Lipschitz Community of Gradient: $ \nabla f(x) - \nabla f(y) < L x - y $
	b. $L = A = \lambda_{MAX}(A)$ c. $\alpha \in \left[0, \frac{2}{L} = \frac{2}{\lambda_{MAX}(A)}\right]$
	 ii. Exact Line Search a. May not always work but always work for quadratic functions.
	b. $\alpha = \frac{-\nabla f(x)^T d}{d^T A d}$ iii. Backtracking Line Search:
	a. Choose α such that $f(x_k) - f(x_k + \alpha d_k) \ge -\mu \alpha \nabla f(x_k) d_k$ Algorithm: While $(x_k) - f(x_k + \alpha d_k) < -\mu \alpha \nabla f(x_k) d_k$: $\alpha = \beta \alpha$
	Search Directions: $\nabla f(x, d) < 0$, Steepest Descent: $d = -\nabla f(x, d)$
	Descent Algorithm: 1. start from x_0
	2. For $k = 0, 1,, n$: i. Compute search direction d_k
	ii. Choose Step size α_k using one of the three methods above. iii. $x = x + \alpha d = x - \alpha \nabla f(x)$ (If using steepest descent)
	iv. Exit when $ \nabla f(x_{k+1}) < \varepsilon$
	3. Return x_{k+1} .
	Newton's Method: 1. start from x_0
	2. For $k = 0, 1,, n$:
	1. Compute search direction u_k , $v_2 f(x)u = -f(x_k)$ (using Newton's direction, convergence require $\nabla_2 f(x) > 0$
	ii. Choose Step size α_k using one of the three methods above. iii $x_{k+1} = x_k + \alpha d_k$
	iv. Exit when $ \nabla f(x_{k+1}) < \varepsilon$
	3. Return x_{k+1} .
	Scaled Descent:
	2. For $k = 0, 1,, n$:
	i. Choose Step size α_k using one of the three methods above.

	ii. $x_{k+1} = x_k - \alpha D \nabla f(x_k), D = SS^T, S = \begin{pmatrix} S_1 & 0 & 0 \\ 0 & \ddots & 0 \end{pmatrix}, x = sy$
	$ \nabla f(r, \cdot) \le \epsilon$
	3. Return x_{k+1} .
Positive	Positive definite matrix:
definiteness & Cholesky	Matrix A: (n, n) is positive definite if for all column vectors $x: x^T A x > 0$
Factorization	Properties of Positive Definite Matrices:
	1. For any full rank matrix X, if A is positive definite, then X' AX is also positive definite. 2. If a matrix has all positive eigenvalues \leftrightarrow the matrix is positive definite.
	3. A is positive definite \leftrightarrow A has Cholesky Factorization.
	4. A is positive definite \rightarrow the first entry a_{11} of A is positive: $a_{11} > 0$
	Cholesky Factorization:
	1. $A = \begin{pmatrix} a_{11} & w^{2} \\ w & k \end{pmatrix}$, a_{11} is the first top left entry of A, w is the remainder of the first column.
	2. $A = \begin{pmatrix} \alpha & 0 \\ 0 & k \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix} \begin{pmatrix} \alpha & w^T / \alpha \\ 0 & w^T \end{pmatrix}$, $k - \frac{ww^T}{w}$ is also positive definite.
	$(w/\alpha I) (0 R - \frac{1}{a_{11}}) (0 I) a_{11}$
Linear Constraint	Setting: A: (m, n) , $m < n$: underdetermined system, fewer equations than variables
	Objective Function: $\min_{x \in D^n} f(x)$ subj to $Ax = b$
	$\mathbf{r} = \mathbf{r} + $
	Feasible Sets: $F = \{x \mid Ax = b\} = \{x + zp \mid p \in R^n \mid m\}$ i. \bar{x} is a particular solution such that $A\bar{x} = b, Az = 0, < A^T, z > = 0 \rightarrow z \in Null(A)$
	ii. $Range(z) = Null(A) \perp Range(A^T), Null(z^T) = Range(A^T)$
	Reduced Problem: $\min_{x \in D^{0} = m} f(\bar{x} + zp)$, suppose p^{*} is the optimal solution, $x^{*} = \bar{x} + zp^{*}$:
	i. Optimality condition:
	$\nabla_p f(\bar{x} + zp^*) = 0 \rightarrow 0 = z^T \nabla f(x^*) \rightarrow 0 = \langle z, x^* \rangle \rightarrow x^* \in Null(z^T) = Range(A^T)$
	First-Order Necessary Conditions:
	A point x^* is a local min of min $f(x)$ subj to $Ax = b$ only if there exists a vector $y \in \mathbb{R}^n$: i. Optimality $\nabla f(x^*) = A^T x$ is a $\nabla f(x^*) \in Barran (A^T)$ is $\pi^T \nabla f(x^*) = 0$ is $\nabla f(x^*)^T = 0$. For $x \in \mathbb{R}^n$
	1. Optimality: $\forall j (x) = A \ y \leftrightarrow \forall j (x) \in Range(A) \leftrightarrow z \ \forall j (x) = 0 \leftrightarrow \forall j (x) \ p = 0, \forall p \in Null(z)$
	ii. Feasibility: $Ax^* = b$
	Second-order Optimality:
	1. Second-order necessary conditions: i Optimality: $\nabla f(x^*) = A^T y \leftrightarrow \nabla f(x^*) \in Range(A^T) \leftrightarrow z^T \nabla f(x^*) = 0 \leftrightarrow \nabla f(x^*)^T n = 0 \forall n \in A^T$
	Null(z)
	ii. Feasibility: $Ax^* = b$ iii. $-T \nabla f(x^*) = \sum_{i=1}^{n} f(x^*) = \sum$
	$\begin{array}{cccc} \text{m.} & z^* \vee_2 f(x) & jz \ge 0 & \leftrightarrow p^* \vee_2 f(x) & jp \ge 0, \forall p \in Null(z) \\ \text{or } & \text$
	2. Sufficient conditions: all the same except for: $z' \vee_2 f(x^*) z > 0 \leftrightarrow p' \vee_2 f(x^*) p > 0, \forall p \in Null(z)$. Conditions changed from semi-positive definite to strictly positive definite.
Convexity	Convex Sets:
	A set $C \in \mathbb{R}^n$ is convex if for any points $x, y \in C$ and any $\lambda \in [0,1]$, $\lambda x + (1 - \lambda)y \in C$
	Examples of Convex Sets:
	1. Affine/line is convex: $L = \{z + td t \in R\}, z \in R^n, d \neq 0 \in R^n$ 2. Hyperplane: $H_{r,0} = \{x \in R^n a^T x = \beta\} \ a \in R^n \neq 0 \ \beta \in R$
	3. Half-space: $H_{\alpha,\beta} = \{x \in \mathbb{R}^n \alpha^T x \le \beta\}, \alpha \in \mathbb{R}^n \ne 0, \beta \in \mathbb{R}$
	4. Norm Ball: $\{x \in \mathbb{R}^n x - c \le r\}, c \in \mathbb{R}^n$ is the center, $r \in \mathbb{R}$ is the radius.
	5. Convex Hulls of a set: $Conv(s) = \{\sum_{i=1}^{k} \lambda_i x_i \mid x_i \in S, \sum_i \lambda_i = 1, k \in N\}$

6. Simplex: $\Delta_n = \{x \in \mathbb{R}^n \mid \sum_{i=1}^n x_i \le 1, k \in \mathbb{N}\}$ 7. Unit Simplex: $\overline{\Delta_n} = \{x \in \mathbb{R}^n \mid \sum_{i=1}^n x_i = 1, k \in \mathbb{N}\}$ Set Operations that Preserve Convexity: 1. intersections of convex sets are convex 2. Additions of Convex sets are convex 3. Image: If $C \in \mathbb{R}^n$ is a convex set & matrix A: (m, n), then $A(c) = \{Ax | x \in C\}$ is also convex. **Convex Functions:** A function: $f: C \in \mathbb{R}^n \to \mathbb{R}$, C is convex, is convex if: $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$ Strict convex: $f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$ **Common Convex Functions:** 1. Affine/line function: $a^T x + \beta$ for some $\alpha \in \mathbb{R}^n, \beta \in \mathbb{R}$ (convex & concave) 2. Exponential: e^{ax} for any $a \in R$ 3. Powers: x^a on R_{++} for all $a \ge 1$ or $a \le 0$, Note that when 0 < a < 1 the function is concave 4. absolute value: $|x|^p, p \ge 1$ 5. Negative entropy: xlog(x) when $x \in R_{++}$ 6. Norms: all the norms are convex; proved using the triangular inequality: $||x + y|| \le ||x|| + ||y||$ Function Operations that Preserve Convexity: 1. Non-negative multiplies. 2. Sum of the convex functions are also convex 3. Composition of convex functions with an affine function is also convex: i.e. $e^{a^T x + \beta}$ Theorems to Prove Convexity of Functions: 1. Let $f: C \to R$ be continuously differentiable over $C \in R^n$, then f is convex iff: $f(x) + \nabla f(x)(z - x) \le f(z), \forall x, z \in C$ 2. Let $f: C \to R$ be continuously twice differentiable over $C \in R^n$, then f is convex iff: $\nabla_2 f(x) \geq 0 \rightarrow Pos. def$ Convex Optimality: 1. For a convex function, if x^* is a local min, then it's a global min. 2. Unconstraint case: Optimal $\rightarrow \nabla f(x^*) = 0$ 3. Constraint case: $\nabla f(x^*)^T(x-x^*) \ge 0, x \in C$ (all feasible directions are non-decreasing). In other words: $-\nabla f(x^*) \in N_c(x^*), N_c(x^*) = \{g \in \mathbb{R}^n | g^T(z - x) \le 0, z \in C\}$ i. ii. $\leftrightarrow -\nabla f(x^*) \in Range(A^T)$ Projection Theorem: $proj_c(x) = g(z) = \min_{z \in C} \frac{1}{2} ||z - x||^2$ Projection 1. If the objective function is convex then projection is unique. 2. If $x \in C$, then $proj_c(x) = x$ 3. $-\nabla g(z) = -(z - x) = x - z \in N_{C}(z), N_{C}(z) = \{g \in \mathbb{R}^{n} | g^{T}(c - z) \leq 0, z \in C\}$ **Projected Gradient Method:** 1. start from x_0 2. For k = 0, 1, ..., n: Choose Step size α_k using one of the three methods above. i. ii. $x_{k+1} = proj_c(x_k - \alpha_k * \nabla f(x_k))$ Exit when $||\mathbf{x}_k - \mathbf{x}_{k+1}|| < \varepsilon$ iii. 3. Return x_{k+1} . Stationarity of Projected Gradient: $x^* \in argmin_{x \in C} f(x)$ with C closed & convex, the $f: \mathbb{R}^n \to \mathbb{R}$ is convex differentiable if and only if: $x^* = proj_c(x^* - \alpha_k * \nabla f(x^*))$

Convergence of Gradient Descent:	
Linear	Geometry of Linear Programming:
Programming	Suppose we have a polyhedron: $P = \{x \mid Ax \le b\}, A = \begin{pmatrix} a_1^T \\ \vdots \\ a_m^T \end{pmatrix}, A: (m, n) m < n$. Polyhedrons are convex
	1. Equivalent Concepts:
	i. Extreme points: $x \in P$ is an extreme point of P if there does not exist two vectors $y, z \in P$ such that: x = 3y + (1 - 3)z
	ii. $x \in P$ is a vertex of P if there exists an vector $c \neq 0$ such that:
	$c^T x < c^T y, \forall y \in p, y \neq x$ iii. x^* is a basic solution if $a_{i,1}, \dots, a_{i,n}$ are linearly independent $\leftrightarrow Bx^* = b_R \leftrightarrow Rank(B) = n$
	Settings: $A = (B \ N)$ where $B: (m, m)$ is a basis of A , let the indices in B be $\beta = \{i_1,, i_k\}, b_B = \begin{pmatrix} b_{i_1} \\ \vdots \\ b_{i_k} \end{pmatrix}$ a. Active Constraints: $a_i^T x^* = b_i, i \in \beta$ b. Inactive feasible constraints: $a_i^T < b_i, i \in N$ c. Inactive infeasible constraints: $a_i^T x^* > b_i, i \notin B \cup N$
	Properties of Polyhedron: 1. <i>P</i> contains a full line \leftrightarrow <i>P</i> has no extreme points 2. <i>P</i> is unbounded \leftrightarrow <i>P</i> contains a half-line.
	Converting Generic Polyhedron to Standard Form: Suppose we have a generic polyhedron $P = \{x \mid Ax = b, Cx \le d\}$ & we want to convert it to standard form: $p = \{x \mid Ax = b, x \ge 0\}, b \ge 0$, the following steps should be taken:
	1. Ensure that all converted $b_i \in b$ are positive: i. For any $b_i < 0$ in generic form $Ax = b$, replace $a_i x_i = b_i \rightarrow (-a_i)x = (-b_i)$ ii. For $d_i < 0$, replace $c_i^T x \le d_i \rightarrow -c_i^T x \ge -d_i$, $c_i^T x \ge d_i \rightarrow -c_i^T x \le -d_i$
	2. Converting Free Variables x_i (x_i has no constraints): $x_i = x'_i + x''_i > 0 \le x''_i > 0$
	i. x'_i encodes positive part of x_i , x''_i encodes the negative part of x_i ii. Optimal solution must have $x'_i * x''_i = 0$
	3. Using Slack & Surplus to Convert Inequality Constraints: i. Replace $c_i^T x \le d_i \rightarrow c_i^T x + s_i = d_i, s_i \ge 0$ ii. Replace $c_i^T X \ge d_i \rightarrow c_i^T x - s_i = d_i, s_i \ge 0$
	Basic Solution in Standard Form: 1. Setting: <i>n</i> variables, $m + n$ constraints (<i>m</i> equality constraints from $Ax = b$, <i>n</i> inequality constraints $x \ge 0$) 2. $\bar{A}x = \begin{pmatrix} B & N \\ 0 & I \end{pmatrix} \begin{pmatrix} x_B \\ x_N \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix}$, $x_N = 0$, $Bx_B = b$, $B: (m, m)$, $A = (n, n)$, $N = (n - m, n - m)$ 3. Solution is degenerate if some elements in x_B is also 0.

	Simplex Method:
	Assumptions: problem in LP standard Form: $\min c^T r subi \ Ar = h \ r > 0$
	x
	Simplex Method: Start with basic variables with indices $B = \{\beta_1,, \beta_m\}$ ($x_{i \in B}$ are nonzero) and non-basic variables $N =$
	$\{n_1, \dots, n_{n-m}\}$ such that $A = [B, N], c = \binom{c_B}{c_N}$
	 For each iteration: k = 0,, n: Compute Bx_B = b → x_B Compute y such that B^Ty = c_B → y Calculate reduced cost: z_N = c_N − N^Ty → Z_n, choose the most negative entry n_k in Z_n to enter the basis. Solve Bd_B = -a_{nk} Kick the basic variable with index: q = argmin_{q∈{1,,m}& d_{βq}<0 - x_{βq/d_{βq}/d_{βq}<0}} Form the new basic & non-basic basis & start over again. Optimality: No improving directions exists for each j = 1,, n such that
	$x_j = 0 \& z_j \ge 0 \ OR \ x_j \ge 0 \& z_j = 0$ (Must hold for basics)
Duality	Primal Problem: $\min c^T r \text{subi to } 4r = h r > 0$
	i n variables m constraints (because A is $m \times n \times n \times m$ underdetermined)
	ii. Suppose optimal x^* , then the unique optimal value would be $p^* = c^T x^*$
	Dual of the Linear Problem: $\max h^T y \text{subi to } c - A^T y > 0$
	In standard form:
	max $b^T y$ subj to $A^T y + z = c, z \ge 0$
	i We applied "slack & surplus method" to obtain the value of z such that $z = c - A^T v$
	Derivation of the Dual of the Linear Problem: 1. Consider the relaxed version of the primal problem (by converting the constraint to a price of violation) Relaxed Problem: $\min_{x} c^T x + y^T (b - Ax)$ subj to $x \ge 0$, y: price of violating constraints
	i. Relaxed problem provides a lower bound for optimal value p^* (by definition) ii. Dimensions: $A = (m, n), x = (n, 1), b = (m, 1), y = (m, 1)$ iii. $g(y) = \min_{x \to 0} \{c^T x + y^T (b - Ax)\} \le c^T x^* + y^T (b - Ax^*) = c^T x^* = p^*$
	iv. $y^{T}(b - Ax^{*})$ cancelled out because $Ax^{*} = b$ by constraint. 2. Then by simplifying $g(y)$ as a function of y, we obtain: $g(y) = \min_{x \ge 0} \{c^{T}x + y^{T}(b - Ax)\}$ $= \min\{c^{T}x + y^{T}h - y^{T}Ax\}$
	$= v^T h + \min\{c^T x - v^T A x\}$
	$= b^{T} v + \min_{x \ge 0} \{x^{T} (c - A^{T} v)\}$ dimension of two parts here are (1.1)
	$= b^{T}y + \min_{x \ge 0} \{x^{T}(c - A^{T}y)\}$
	$= \begin{cases} b & y & y & z \\ -\infty & otherwise \end{cases} \text{ If } c - A^{T}y < 0, \text{ then I can choose } x \text{ arbitrarily such that } g(y) \to -\infty \end{cases}$
	Weak Duality: Suppose x is primal feasible (constraints for primal problem satisfied: $Ax = b, x \ge 0$) and (y, z) is dual feasible (constraints for dual problem satisfied: $A^Ty + z = c, z \ge 0$), then the primal objective is bounded below by the dual objective:
	$c^{T}x = (A^{T}y + z)x = y^{T}Ax + z^{T}x = y^{T}b + z^{T}x \ge y^{T}b, \ z \ge 0$ Weak Duality Theorem:

If (x, y, z) is primal/dual feasible, then for value p:

	i. the primal value is an upper bound for the dual value.ii. the dual value is a lower bound for the primal value.
	Complementarity: The bound is tight (primal value = dual value) when $x \& y$ are complementary, namely $x^T z = 0$: $x_j = 0 \& z_j \ge 0 \text{ or } x_j \ge 0 \& z_j = 0$
	Optimal Conditions: 1. Simplex maintains primal feasibility at every iteration: $Ax = b, x \ge 0$ 2. Method defines y via $B^T y = c_B, z = c - A^T y$ & maintains complementarity: $x_B \ge 0$ & $z_B = 0$ and $x_N = 0$ & $z_N > = < 0$. 3. Evit when $z \ge 0$ such that (y, z) is dual feasible: $A^T y + z = c, z \ge 0$
	Strong Duality Theorem: if an LP has an optimal solution, so does it dual, and then optimal values for dual & primal problems are equal.
	Theorem: the primal-dual triple (x, y, z) is optimal iff 1. Primal Feasible: $Ax = b, x \ge 0$ 2. Dual Feasible: $A^Ty + z = c, z \ge 0$ 3. Complementarity: $x^Tz = 0$
Matrix Game:	Let matrix A denotes to the amounts that Y pays X such that a_{ij} represents the specific amount by X taking strategy j & Y taking strategy i. $A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{nm} \end{pmatrix}, A = (m, n)$ X strategy: Choose x subject to $e^T x = 1 \ OR \ \sum_{j=1}^n x_j = 1$ Y strategy: Choose y subject to $e^T y = 1 \ OR \ \sum_{i=1}^m y_i = 1$ Total Expected Payoff: $y^T Ax = \sum_{i=1}^m \sum_{j=1}^n a_{ij} x_j y_i$ Player Y's analysis:
	Suppose Y chooses y as his strategy, then X will best defend by choosing x to maximise the expected payoff: $\max_{x} y^{T}Ax \ subj \ to \ e^{T}x = 1, e^{T}y = 1, y \ge 0, x \ge 0$ Then, Y should choose y to protect against the worst possible case when X knows what Y will do: given y, $\min_{y} (\max_{x} y^{T}Ax) \leftrightarrow \max_{j} (y^{T}A)_{j}$ 1. Solving for Y's strategy: i. From LP theory, a basic optimal solution exists implies that x* only has 1 nonzero component = 1.
	(Because there is only 1 equality constraint for inner problem x) ii. Original Problem: $\min_{y} (\max_{x} y^T Ax)$ subj to $e^T y = 1, y \ge 0$ iii. Reformulate as an LP: $\min_{y} v$ subj to $ve \ge A^T v e^T v = 1, y \ge 0$
	Player X's strategy: $\max_{x} \left(\min_{y} y^{T} Ax \right)$ subj to $e^{T}x = 1, e^{T}y = 1, y \ge 0, x \ge 0$ i. Similarly, y^{*} only has 1 nonzero component (=1)
	 ii. Reformulated problem: max λ subj to λe ≤ Ax, e^Tx = 1, x ≥ 0 MiniMax Theorem: λ = v, namely X's worst-case expected win = Y's worst-case expected loss. i. X & Y analysis are dual pairs such that their optimal values should be the same (by strong duality). X's the primal problem & Y is the dual problem.