
CPSC 406 Study Sheet: 

Linear Least 

Squares: 
Setting: 𝐴: (𝑚, 𝑛) 𝑚 > 𝑛 overdetermined system, 𝑏: (𝑚, 1), 𝑥: (𝑛, 1) 

 

Objective Function: min
𝑥

||𝑏 − 𝐴𝑥||
2

= min
𝑟,𝑥

{||𝑟||
2

|𝐴𝑥 + 𝑟 = 𝑏} 

i. 𝑟 can be treated as residuals such that 𝑟 ∉ 𝑅𝑎𝑛𝑔𝑒(𝐴) 

ii. In general, there is no solution to the system unless 𝑟 = 0 or 𝐴𝑥 = 𝑏 

iii. If 𝑅𝑎𝑛𝑘(𝐴) ≠ 𝑛, namely, 𝐴 has linearly dependent columns, then the solution will not be unique (but 

the min value will be unique) 

 

Solving the Linear System: 

1. Normal Equations: 𝐴𝑇𝐴𝑥𝑙𝑠 = 𝐴𝑇𝑏  → 𝑥𝑙𝑠 = 𝐴𝑇𝐴\𝐴𝑇𝑏  𝑂𝑅  𝑥𝑙𝑠 = (𝐴𝑇𝐴)−1𝐴𝑇𝑏 

i. 𝐴 is assumed to be a non-singular matrix, in other words, 𝐴 is assumed to be full rank. 

ii. Issues: 𝐶𝑜𝑛𝑑(𝐴𝑇𝐴) =
𝜆

max (AT𝐴)

𝜆min(𝐴𝑇𝐴)

 might be big causing huge errors: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 16 − log(𝐶𝑜𝑛𝑑(𝐴𝑇𝐴)) 

 

2. Using QR decomposition:  

𝐴 = 𝑄𝑅 = (𝑄1 𝑄2) (
𝑅1

0
) , 𝑅1𝑥𝑙𝑠 = 𝑄1

𝑇𝑏 → 𝑥𝑙𝑠 = 𝑅1
−1𝑄1

𝑇𝑏 

i. 𝑄1: (𝑚, 𝑛) is the orthogonal basis of 𝑅𝑎𝑛𝑔𝑒(𝐴), found using the gramma-Schmidt. 

ii. 𝑄2: (𝑚, 𝑚 − 𝑛) is the orthogonal basis of 𝑁𝑢𝑙𝑙(𝐴𝑇), use gramma-Schmidt to enforce orthogonality. 

iii. 𝑅1 ∶ (𝑛, 𝑛), 𝑅: (𝑚, 𝑛) are both upper-triangular matrices.  

iv. 𝐴 = 𝑄1𝑅1 

v. Better than normal equation because the solution has 𝑐𝑜𝑛𝑑(𝑅1) which has less errors. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

16 − log(𝐶𝑜𝑛𝑑(𝑅1)) , 𝑐𝑜𝑛𝑑(𝑅1) = 𝑐𝑜𝑛𝑑(𝐴) =
𝜆max (𝐴)

𝜆min(𝐴)
  

 

Regularized Least 

Squares:  

Regularization: using prior knowledge (smoothness here) to regularize data: 

 

Objective Function: min
𝑥

1

2
||𝐴𝑥 − 𝑏||

2
− 𝜆𝑓2(𝑥) 

 

Pareto Frontier: the points below the frontier are possible & the points above are not.  

 

Tikhonov Regularization: to promote smoothness & reduce noise.  

1. Objective Function:  

min
𝑥

||𝐴𝑥 − 𝑏||
2

+ 𝜆||𝐷𝑥||
2

= ||(
𝐴

√𝜆𝐷
) 𝑥 − (

𝑏
0

)||

2

,   𝐷𝑥 = (

𝑥1 − 𝑥2

⋮
𝑥𝑛−1 − 𝑥𝑛

) , 𝐷 = (
1 −1 …
0 1 −1
0 0 1

) 

 

2. Solution to Tikhonov Regularization: 

∇𝑓(𝑥) = 2 ∗ ((
𝐴

√𝜆𝐷
) 𝑥 − (

𝑏
0

)) ∗ ((
𝐴

√𝜆𝐷
) 𝑥)

𝑇

 

∇𝑓(𝑥) = 2 ∗ (𝐴𝑇𝐴𝑥 + 𝜆𝐷𝑇𝐷𝑥 − 𝐴𝑇𝑏) 

𝐴𝑇𝐴𝑥 + 𝜆𝐷𝑇𝐷𝑥 − 𝐴𝑇𝑏 = 0 

𝐴𝑇𝐴𝑥 + 𝜆𝐷𝑇𝐷𝑥 = 𝐴𝑇𝑏 

𝑥 = (𝐴𝑇𝐴 + 𝜆𝐷𝑇𝐷)−1𝐴𝑇𝑏 

 

Gradient Directional Derivatives: 

1. 𝑓′(𝑥, 𝑑) =  ∇𝑓(𝑥) ∗ 𝑑 

2. 𝑓′(𝑥, 𝑎𝑑) =  𝑎∇𝑓(𝑥) ∗ 𝑑 

3. Suppose 𝑒𝑖 are the unit directions in 𝑅𝑛, 𝑓′(𝑥, 𝑒𝑖) = [∇𝑓(𝑥)]𝑖 is the 𝑖th element in the gradient. 

 

Nonlinear Least 

Squares 
1. Objective Function: min

𝑥

1

2
||𝑟(𝑥)||

2
, 𝑟(𝑥) = 𝐴𝑥 − 𝑏 

 

2. Using the Gauss-Newton Method to solve: 

i. Start from an arbitrary point: 𝑥0 

ii. For 𝑘 = 0,1,2 … , 𝑛: 

a. Linearize the residuals at 𝑘th iteration: 𝑟𝑘(𝑥) = 𝑟(𝑥𝑘) + 𝐽(𝑥𝑘)(𝑥 − 𝑥𝑘) + 𝑜(||𝑥 − 𝑥𝑘||) 

b. Find 𝑥𝑘+1 by minimising the linearized residuals: 



𝑥𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 (
1

2
||𝑟𝑘(𝑥)||

2
) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 (

1

2
||𝑟(𝑥𝑘) + 𝐽(𝑥𝑘)(𝑥 − 𝑥𝑘)||

2
)  

𝐽(𝑥𝑘)𝑥 = 𝑟(𝑥𝑘) − 𝐽(𝑥𝑘)𝑥𝑘 

𝑥𝑘+1 = 𝐽(𝑥𝑘)\(𝑟(𝑥𝑘) − 𝐽(𝑥𝑘)𝑥𝑘), 𝐽(𝑥𝑘) = ∇𝑟(𝑥𝑘)𝑇 

𝑂𝑅   𝑥𝑘+1 = 𝐴𝑘\𝑏𝑘,   𝐴𝑘 = 𝐽(𝑥𝑘), 𝑏𝑘 = 𝑟(𝑥𝑘) − 𝐽(𝑥𝑘)𝑥𝑘 

c. If ||𝑥𝑘+1 − 𝑥𝑘||
2

< 𝜀, exit the loop. 

iii. Return 𝑥𝑘+1. 

 

3. Optimality: 𝑥∗ is a local min if  

i. Necessary conditions: 1. ∇𝑓(𝑥∗) = 0, 2. ∇2𝑓(𝑥∗) ≥ 0 (Hessian is semi-positive definite) 

ii. Sufficient conditions: 1. ∇𝑓(𝑥∗) = 0, 2. ∇2𝑓(𝑥∗) > 0 (Hessian is positive definite) 

 

4. Coerciveness & Unboundedness: 

i. Coerciveness: lim
||𝑥||→∞

𝑓(𝑥) = ∞, this implies that there is a minimum. 

ii. Unboundedness: lim
||𝑥||→∞

𝑓(𝑥) = −∞, this implies that there is no minimum. 

 

Gradient Descent: Step Size Selection: 

i. Constant Step Size 

a. Using Lipschitz Community of Gradient: 

||∇𝑓(𝑥) − ∇𝑓(𝑦)|| < 𝐿||𝑥 − 𝑦|| 

b. 𝐿 = ||𝐴|| = 𝜆𝑀𝐴𝑋(𝐴) 

c. 𝛼 ∈ [0,
2

𝐿
=

2

𝜆𝑀𝐴𝑋(𝐴)
]  

ii. Exact Line Search 

a. May not always work but always work for quadratic functions. 

b. 𝛼 =
−∇𝑓(𝑥)𝑇𝑑

𝑑𝑇𝐴𝑑
 

iii. Backtracking Line Search: 

a. Choose 𝛼 such that 𝑓(𝑥𝑘) − 𝑓(𝑥𝑘 + 𝛼𝑑𝑘) ≥  −𝜇𝛼∇𝑓(𝑥𝑘)𝑑𝑘 

Algorithm: While (𝑥𝑘) − 𝑓(𝑥𝑘 + 𝛼𝑑𝑘) <  −𝜇𝛼∇𝑓(𝑥𝑘)𝑑𝑘: 𝛼 = 𝛽𝛼 

 

Search Directions: ∇𝑓(𝑥, 𝑑) < 0, Steepest Descent: 𝑑 =  −∇𝑓(𝑥, 𝑑) 

 

Descent Algorithm: 

1. start from 𝑥0 

2. For 𝑘 = 0, 1, … , 𝑛: 

i. Compute search direction 𝑑𝑘 

ii. Choose Step size 𝛼𝑘 using one of the three methods above. 

iii. 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑑𝑘 = 𝑥𝑘 − 𝛼∇𝑓(𝑥𝑘) (If using steepest descent). 

iv. Exit when ||∇𝑓(𝑥𝑘+1)|| < 𝜀 

3. Return 𝑥𝑘+1. 

 

Newton’s Method: 

1. start from 𝑥0 

2. For 𝑘 = 0, 1, … , 𝑛: 

i. Compute search direction 𝑑𝑘 , ∇2𝑓(𝑥)𝑑 =  −𝑓(𝑥𝑘) (using Newton’s direction, convergence require 

∇2𝑓(𝑥) > 0 

ii. Choose Step size 𝛼𝑘 using one of the three methods above. 

iii. 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑑𝑘 

iv. Exit when ||∇𝑓(𝑥𝑘+1)|| < 𝜀 

3. Return 𝑥𝑘+1. 

 

Scaled Descent: 

1. start from 𝑥0 

2. For 𝑘 = 0, 1, … , 𝑛: 

i. Choose Step size 𝛼𝑘 using one of the three methods above. 



ii. 𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝐷∇𝑓(𝑥𝑘), 𝐷 = 𝑆𝑆𝑇 , 𝑆 = (
𝑆1 0 0
0 ⋱ 0
0 0 𝑆𝑛

) , 𝑥 = 𝑠𝑦 

iii. Exit when ||∇𝑓(𝑥𝑘+1)|| < 𝜀 

3. Return 𝑥𝑘+1. 

 

Positive 

definiteness & 

Cholesky 

Factorization 

Positive definite matrix: 

Matrix 𝐴: (𝑛, 𝑛) is positive definite if for all column vectors 𝑥: 𝑥𝑇𝐴𝑥 > 0 

 

Properties of  Positive Definite Matrices: 

1. For any full rank matrix 𝑋, if 𝐴 is positive definite, then 𝑋𝑇𝐴𝑋 is also positive definite. 

2. If a matrix has all positive eigenvalues ↔ the matrix is positive definite. 

3. 𝐴 is positive definite ↔ 𝐴 has Cholesky Factorization. 

4. 𝐴 is positive definite → the first entry 𝑎11 of 𝐴 is positive: 𝑎11 > 0 

 

Cholesky Factorization: 

1. 𝐴 = (𝑎11 𝑤𝑇

𝑤 𝑘
) , 𝑎11 is the first top left entry of 𝐴, 𝑤 is the remainder of the first column. 

2. 𝐴 = (
𝛼 0

𝑤 𝛼⁄ 𝐼
) (

1 0

0 𝑘 −
𝑤𝑤𝑇

𝑎11

) (𝛼 𝑤𝑇 𝛼⁄
0 𝐼

) , 𝑘 −
𝑤𝑤𝑇

𝑎11
 is also positive definite. 

 

Linear Constraint Setting: 𝐴: (𝑚, 𝑛), 𝑚 < 𝑛: underdetermined system, fewer equations than variables 

 

Objective Function: min
𝑥∈𝑅𝑛

𝑓(𝑥)  𝑠𝑢𝑏𝑗 𝑡𝑜 𝐴𝑥 = 𝑏 

 

Feasible Sets: 𝐹 = {𝑥 |𝐴𝑥 = 𝑏} = {𝑥̅ + 𝑧𝑝 | 𝑝 ∈ 𝑅𝑛−𝑚} 

i. 𝑥̅ is a particular solution such that 𝐴𝑥̅ = 𝑏, 𝐴𝑧 = 0, < 𝐴𝑇 , 𝑧 > = 0 → 𝑧 ∈ 𝑁𝑢𝑙𝑙(𝐴) 

ii. 𝑅𝑎𝑛𝑔𝑒(𝑧) = 𝑁𝑢𝑙𝑙(𝐴)  ⊥ 𝑅𝑎𝑛𝑔𝑒(𝐴𝑇), 𝑁𝑢𝑙𝑙(𝑧𝑇) =  𝑅𝑎𝑛𝑔𝑒(𝐴𝑇) 

 

Reduced Problem: min
𝑝∈𝑅𝑛−𝑚

𝑓(𝑥̅ + 𝑧𝑝), suppose 𝑝∗ is the optimal solution, 𝑥∗ = 𝑥̅ + 𝑧𝑝∗ : 

i. Optimality condition:  

∇𝑝𝑓(𝑥̅ + 𝑧𝑝∗) = 0 → 0 = 𝑧𝑇∇𝑓(𝑥∗) → 0 =< 𝑧, 𝑥∗ > → 𝑥∗ ∈ 𝑁𝑢𝑙𝑙(𝑧𝑇) = 𝑅𝑎𝑛𝑔𝑒(𝐴𝑇) 

 

First-Order Necessary Conditions: 

A point 𝑥∗ is a local min of min
𝑥∈𝑅𝑛

𝑓(𝑥)  𝑠𝑢𝑏𝑗 𝑡𝑜 𝐴𝑥 = 𝑏 only if there exists a vector 𝑦 ∈ 𝑅𝑛: 

i. Optimality: ∇𝑓(𝑥∗) = 𝐴𝑇𝑦  ↔ ∇𝑓(𝑥∗) ∈ 𝑅𝑎𝑛𝑔𝑒(𝐴𝑇)  ↔ 𝑧𝑇∇𝑓(𝑥∗) = 0 ↔ ∇𝑓(𝑥∗)𝑇𝑝 = 0, ∀𝑝 ∈
𝑁𝑢𝑙𝑙(𝑧) 

ii. Feasibility: 𝐴𝑥∗ = 𝑏  
 

Second-order Optimality: 

1. Second-order necessary conditions: 

i. Optimality: ∇𝑓(𝑥∗) = 𝐴𝑇𝑦  ↔ ∇𝑓(𝑥∗) ∈ 𝑅𝑎𝑛𝑔𝑒(𝐴𝑇)  ↔ 𝑧𝑇∇𝑓(𝑥∗) = 0 ↔ ∇𝑓(𝑥∗)𝑇𝑝 = 0, ∀𝑝 ∈

𝑁𝑢𝑙𝑙(𝑧) 

ii. Feasibility: 𝐴𝑥∗ = 𝑏  

iii. 𝑧𝑇∇2𝑓(𝑥∗)𝑧 ≥ 0 ↔ 𝑝𝑇∇2𝑓(𝑥∗)𝑝 ≥ 0, ∀𝑝 ∈ 𝑁𝑢𝑙𝑙(𝑧)  

2. Sufficient conditions: all the same except for: 𝑧𝑇∇2𝑓(𝑥∗)𝑧 > 0 ↔ 𝑝𝑇∇2𝑓(𝑥∗)𝑝 > 0, ∀𝑝 ∈ 𝑁𝑢𝑙𝑙(𝑧). 

Conditions changed from semi-positive definite to strictly positive definite.  

 

Convexity Convex Sets: 

A set 𝐶 ∈ 𝑅𝑛 is convex if for any points 𝑥, 𝑦 ∈ 𝐶 and any 𝜆 ∈ [0,1],  
𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝐶 

Examples of Convex Sets: 

1. Affine/line is convex: 𝐿 = {𝑧 + 𝑡𝑑 |𝑡 ∈ 𝑅} , 𝑧 ∈ 𝑅𝑛, 𝑑 ≠ 0 ∈ 𝑅𝑛 

2. Hyperplane: 𝐻𝛼,𝛽 = {𝑥 ∈ 𝑅𝑛|𝛼𝑇𝑥 = 𝛽}, 𝛼 ∈ 𝑅𝑛 ≠ 0, 𝛽 ∈ 𝑅 

3. Half-space: 𝐻𝛼,𝛽
− = {𝑥 ∈ 𝑅𝑛|𝛼𝑇𝑥 ≤ 𝛽}, 𝛼 ∈ 𝑅𝑛 ≠ 0, 𝛽 ∈ 𝑅 

4. Norm Ball: {𝑥 ∈ 𝑅𝑛| ||𝑥 − 𝑐|| ≤ 𝑟}, 𝑐 ∈ 𝑅𝑛 is the center, 𝑟 ∈ 𝑅 is the radius. 

5. Convex Hulls of a set: 𝐶𝑜𝑛𝑣(𝑠) = {∑ 𝜆𝑖𝑥𝑖 | 𝑥𝑖 ∈ 𝑆, ∑ 𝜆𝑖𝑖 = 1, 𝑘 ∈ 𝑁}𝑘
𝑖=1  



6. Simplex: ∆𝑛= {𝑥 ∈ 𝑅𝑛 |  ∑ 𝑥𝑖
𝑛
𝑖=1 ≤ 1, 𝑘 ∈ 𝑁}   

7. Unit Simplex: ∆𝑛
̅̅̅̅ = {𝑥 ∈ 𝑅𝑛 |  ∑ 𝑥𝑖

𝑛
𝑖=1 = 1, 𝑘 ∈ 𝑁}   

 

Set Operations that Preserve Convexity: 

1. intersections of convex sets are convex 

2. Additions of Convex sets are convex 

3. Image: If 𝐶 ∈ 𝑅𝑛 is a convex set & matrix 𝐴: (𝑚, 𝑛), then 𝐴(𝑐) = {𝐴𝑥|𝑥 ∈ 𝐶} is also convex. 

 

Convex Functions: 

A function: 𝑓: 𝐶 ∈ 𝑅𝑛 → 𝑅, 𝐶 is convex, is convex if: 

𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦) 

 

Strict convex: 𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) < 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦) 

 

Common Convex Functions: 

1. Affine/line function: 𝑎𝑇𝑥 + 𝛽 for some 𝛼 ∈ 𝑅𝑛, 𝛽 ∈ 𝑅 (convex & concave) 

2. Exponential: 𝑒𝑎𝑥 for any 𝑎 ∈ 𝑅 

3. Powers: 𝑥𝑎 on 𝑅++ for all 𝑎 ≥ 1 𝑜𝑟 𝑎 ≤ 0, Note that when 0 < 𝑎 < 1 the function is concave 

4. absolute value: |𝑥|𝑝, 𝑝 ≥ 1 

5. Negative entropy: 𝑥𝑙𝑜𝑔(𝑥) when 𝑥 ∈ 𝑅++ 

6. Norms: all the norms are convex; proved using the triangular inequality: ||𝑥 + 𝑦|| ≤ ||𝑥|| + ||𝑦|| 
 

Function Operations that Preserve Convexity: 

1. Non-negative multiplies. 

2. Sum of the convex functions are also convex 

3. Composition of convex functions with an affine function is also convex: i.e. 𝑒𝑎𝑇𝑥+𝛽 

 

Theorems to Prove Convexity of Functions: 

1. Let 𝑓: 𝐶 → 𝑅 be continuously differentiable over 𝐶 ∈ 𝑅𝑛, then 𝑓 is convex iff: 

𝑓(𝑥) + ∇𝑓(𝑥)(𝑧 − 𝑥) ≤ 𝑓(𝑧), ∀𝑥, 𝑧 ∈ 𝐶 

2. . Let 𝑓: 𝐶 → 𝑅 be continuously twice differentiable over 𝐶 ∈ 𝑅𝑛, then 𝑓 is convex iff: 

∇2𝑓(𝑥) ≥ 0 → 𝑃𝑜𝑠. 𝑑𝑒𝑓 

 

Convex Optimality: 

1. For a convex function, if 𝑥∗ is a local min, then it’s a global min.  

2. Unconstraint case: Optimal →  ∇𝑓(𝑥∗) = 0 

3. Constraint case: ∇𝑓(𝑥∗)𝑇(𝑥 − 𝑥∗) ≥ 0, 𝑥 ∈ 𝐶 (all feasible directions are non-decreasing). 

i. In other words: −∇𝑓(𝑥∗) ∈ 𝑁𝑐(𝑥∗), 𝑁𝑐(𝑥∗) = {𝑔 ∈ 𝑅𝑛 |𝑔𝑇(𝑧 − 𝑥) ≤ 0, 𝑧 ∈ 𝐶}  
ii. ↔  −∇𝑓(𝑥∗) ∈ 𝑅𝑎𝑛𝑔𝑒(𝐴𝑇) 

 

Projection Projection Theorem: 𝑝𝑟𝑜𝑗𝑐(𝑥) = 𝑔(𝑧) = min
𝑧∈𝐶

1

2
||𝑧 − 𝑥||

2
 

1. If the objective function is convex then projection is unique. 

2. If 𝑥 ∈ 𝐶, then 𝑝𝑟𝑜𝑗𝑐(𝑥) = 𝑥 

3. −∇𝑔(𝑧) = −(𝑧 − 𝑥) = 𝑥 − 𝑧 ∈ 𝑁𝐶(𝑧), 𝑁𝑐(𝑧) = {𝑔 ∈ 𝑅𝑛 |𝑔𝑇(𝑐 − 𝑧) ≤ 0, 𝑧 ∈ 𝐶}  
 

Projected Gradient Method: 

1. start from 𝑥0 

2. For 𝑘 = 0, 1, … , 𝑛: 

i. Choose Step size 𝛼𝑘 using one of the three methods above. 

ii. 𝑥𝑘+1 = 𝑝𝑟𝑜𝑗𝑐(𝑥𝑘 − 𝛼𝑘 ∗ ∇𝑓(𝑥𝑘)) 

iii. Exit when ||xk − 𝑥𝑘+1|| < 𝜀 

3. Return 𝑥𝑘+1. 

 

Stationarity of Projected Gradient: 

𝑥∗ ∈ 𝑎𝑟𝑔𝑚𝑖𝑛𝑥∈𝐶𝑓(𝑥) with 𝐶 closed & convex, the 𝑓: 𝑅𝑛 → 𝑅 is convex differentiable if and only if: 

𝑥∗ = 𝑝𝑟𝑜𝑗𝑐(𝑥∗ − 𝛼𝑘 ∗ ∇𝑓(𝑥∗)) 

 

 

 

 

 



Convergence of 

Gradient Descent:  

 

 

 

 

 

 

 

 

 

 

 

 

Linear 

Programming 

Geometry of Linear Programming: 

Suppose we have a polyhedron: 𝑃 = {𝑥 | 𝐴𝑥 ≤ 𝑏}, 𝐴 = (
𝑎1

𝑇

⋮
𝑎𝑚

𝑇
) , 𝐴: (𝑚, 𝑛) 𝑚 < 𝑛. Polyhedrons are convex 

because they are intersections of half-spaces.  

1. Equivalent Concepts: 

i. Extreme points: 𝑥 ∈ 𝑃 is an extreme point of 𝑃 if there does not exist two vectors 𝑦, 𝑧 ∈ 𝑃 such that: 

𝑥 = 𝜆𝑦 + (1 − 𝜆)𝑧 

ii. 𝑥 ∈ 𝑃 is a vertex of 𝑃 if there exists aa vector 𝑐 ≠ 0 such that: 

𝑐𝑇𝑥 < 𝑐𝑇𝑦, ∀𝑦 ∈ 𝑝, 𝑦 ≠ 𝑥 

iii. 𝑥∗ is a basic solution if 𝑎𝑖,1, … , 𝑎𝑖,𝑛 are linearly independent ↔ 𝐵𝑥∗ = 𝑏𝐵  ↔ 𝑅𝑎𝑛𝑘(𝐵) = 𝑛  

Settings: 𝐴 = (𝐵 𝑁) where 𝐵: (𝑚, 𝑚) is a basis of 𝐴, let the indices in 𝐵 be 𝛽 = {𝑖1, . . , 𝑖𝑘}, 𝑏𝐵 =

(

𝑏𝑖1

⋮
𝑏𝑖𝑘

) 

a. Active Constraints: 𝑎𝑖
𝑇𝑥∗ = 𝑏𝑖, 𝑖 ∈ 𝛽 

b. Inactive feasible constrains: 𝑎𝑖
𝑇 < 𝑏𝑖, 𝑖 ∈ 𝑁 

c. Inactive infeasible constraints: 𝑎𝑖
𝑇𝑥∗ > 𝑏𝑖, 𝑖 ∉ 𝐵 ⋃ 𝑁 

 

Properties of Polyhedron: 

1. 𝑃 contains a full line ↔ 𝑃 has no extreme points 

2. 𝑃 is unbounded ↔ 𝑃 contains a half-line.  

 

 

Converting Generic Polyhedron to Standard Form: 

Suppose we have a generic polyhedron 𝑃 = {𝑥 | 𝐴𝑥 = 𝑏, 𝐶𝑥 ≤ 𝑑} & we want to convert it to standard form: 

𝑝 = {𝑥 | 𝐴𝑥 = 𝑏, 𝑥 ≥ 0}, 𝑏 ≥ 0, the following steps should be taken: 

 

1. Ensure that all converted 𝑏𝑖 ∈ 𝑏 are positive: 

i. For any 𝑏𝑖 < 0 in generic form 𝐴𝑥 = 𝑏, replace 𝑎𝑖𝑥𝑖 = 𝑏𝑖   → (−𝑎𝑖)𝑥 = (−𝑏𝑖) 

ii. For 𝑑𝑖 < 0, replace 𝑐𝑖
𝑇𝑥 ≤ 𝑑𝑖  → −𝑐𝑖

𝑇𝑥 ≥ −𝑑𝑖, 𝑐𝑖
𝑇𝑥 ≥ 𝑑𝑖  → −𝑐𝑖

𝑇𝑥 ≤  −𝑑𝑖 

 

2. Converting Free Variables 𝑥𝑖 (𝑥𝑖 has no constraints): 

𝑥𝑖 = 𝑥𝑖
′ − 𝑥𝑖

′′, 𝑥𝑖
′ ≥ 0 & 𝑥𝑖

′′ ≥ 0 

i. 𝑥𝑖
′ encodes positive part of 𝑥𝑖, 𝑥𝑖

′′ encodes the negative part of 𝑥𝑖 

ii. Optimal solution must have 𝑥𝑖
′ ∗ 𝑥𝑖

′′ = 0 

 

3. Using Slack & Surplus to Convert Inequality Constraints: 

i. Replace 𝑐𝑖
𝑇𝑥 ≤ 𝑑𝑖   → 𝑐𝑖

𝑇𝑥 + 𝑠𝑖 = 𝑑𝑖, 𝑠𝑖 ≥ 0 

ii. Replace 𝑐𝑖
𝑇𝑋 ≥ 𝑑𝑖   → 𝑐𝑖

𝑇𝑥 − 𝑠𝑖 = 𝑑𝑖 , 𝑠𝑖 ≥ 0 

 

Basic Solution in Standard Form: 

1. Setting: 𝑛 variables, 𝑚 + 𝑛 constraints (𝑚 equality constraints from 𝐴𝑥 = 𝑏, 𝑛 inequality constraints 𝑥 ≥ 0) 

2. 𝐴̅𝑥 = (
𝐵 𝑁
0 𝐼

) (
𝑥𝐵

𝑥𝑁
) = (

𝑏
0

) , 𝑥𝑁 = 0, 𝐵𝑥𝐵 = 𝑏, 𝐵: (𝑚, 𝑚), 𝐴 = (𝑛, 𝑛), 𝑁 = (𝑛 − 𝑚, 𝑛 − 𝑚) 

3. Solution is degenerate if some elements in 𝑥𝐵 is also 0.  

 

 



Simplex Method: 

Assumptions: problem in LP standard Form:  

min
𝑥

𝑐𝑇𝑥  𝑠𝑢𝑏𝑗 𝐴𝑥 = 𝑏, 𝑥 ≥ 0 

 

Simplex Method: 

Start with basic variables with indices 𝐵 = {𝛽1, … , 𝛽𝑚} (𝑥𝑖∈𝐵 are nonzero) and non-basic variables 𝑁 =

{𝑛1, . . 𝑛𝑛−𝑚} such that 𝐴 = [𝐵, 𝑁], 𝑐 = (
𝑐𝐵

𝑐𝑁
) 

 

1. For each iteration: 𝑘 = 0, … , 𝑛: 
i. Compute 𝐵𝑥𝐵 = 𝑏  → 𝑥𝐵 

ii. Compute 𝑦 such that 𝐵𝑇𝑦 = 𝑐𝐵  → 𝑦 

iii. Calculate reduced cost: 𝑧𝑁 = 𝑐𝑁 − 𝑁𝑇𝑦  →  𝑍𝑛,  choose the most negative entry 𝑛𝑘 in 𝑍𝑛 to enter the 

basis. 

iv. Solve 𝐵𝑑𝐵 =  −𝑎𝑛𝑘
 

v. Kick the basic variable with index: 𝑞 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑞∈{1,…,𝑚}& 𝑑𝛽𝑞<0 −
𝑥𝛽𝑞

𝑑𝛽𝑞

 

vi. Form the new basic & non-basic basis & start over again.  

 

Optimality: No improving directions exists for each 𝑗 = 1, … , 𝑛 such that 

𝑥𝑗 = 0 & 𝑧𝑗 ≥ 0  𝑂𝑅  𝑥𝑗 ≥ 0 & 𝑧𝑗 = 0 (Must hold for basics) 

 

Duality  Primal Problem:  

min
𝑥

𝑐𝑇𝑥  𝑠𝑢𝑏𝑗 𝑡𝑜 𝐴𝑥 = 𝑏, 𝑥 ≥ 0 

i. 𝑛 variables, 𝑚 constraints (because 𝐴 is 𝑚 × 𝑛, 𝑛 > 𝑚, underdetermined) 

ii. Suppose optimal 𝑥∗, then the unique optimal value would be 𝑝∗ = 𝑐𝑇𝑥∗ 

 

Dual of the Linear Problem: 

max
𝑦

𝑏𝑇𝑦  𝑠𝑢𝑏𝑗 𝑡𝑜 𝑐 − 𝐴𝑇𝑦 ≥ 0 

In standard form: 

max
𝑦,𝑧

𝑏𝑇𝑦  𝑠𝑢𝑏𝑗 𝑡𝑜 𝐴𝑇𝑦 + 𝑧 = 𝑐, 𝑧 ≥ 0 

i. We applied “slack & surplus method” to obtain the value of 𝑧 such that 𝑧 = 𝑐 − 𝐴𝑇𝑦 

 

Derivation of the Dual of the Linear Problem: 

1. Consider the relaxed version of the primal problem (by converting the constraint to a price of violation) 

Relaxed Problem: min
𝑥

𝑐𝑇𝑥 + 𝑦𝑇(𝑏 − 𝐴𝑥)  𝑠𝑢𝑏𝑗 𝑡𝑜 𝑥 ≥ 0, 𝑦: price of violating constraints 

i. Relaxed problem provides a lower bound for optimal value 𝑝∗ (by definition) 

ii. Dimensions: 𝐴 = (𝑚, 𝑛), 𝑥 = (𝑛, 1), 𝑏 = (𝑚, 1), 𝑦 = (𝑚, 1) 

iii. 𝑔(𝑦) = min
𝑥≥0

{𝑐𝑇𝑥 + 𝑦𝑇(𝑏 − 𝐴𝑥)} ≤ 𝑐𝑇𝑥∗ + 𝑦𝑇(𝑏 − 𝐴𝑥∗) = 𝑐𝑇𝑥∗ = 𝑝∗ 

iv. 𝑦𝑇(𝑏 − 𝐴𝑥∗) cancelled out because 𝐴𝑥∗ = 𝑏 by constraint. 

2. Then by simplifying 𝑔(𝑦) as a function of 𝑦, we obtain: 

𝑔(𝑦) = min
𝑥≥0

{𝑐𝑇𝑥 + 𝑦𝑇(𝑏 − 𝐴𝑥)} 

          = min
𝑥≥0

{𝑐𝑇𝑥 + 𝑦𝑇𝑏 − 𝑦𝑇𝐴𝑥} 

          = 𝑦𝑇𝑏 + min
𝑥≥0

{𝑐𝑇𝑥 − 𝑦𝑇𝐴𝑥} 

          = 𝑏𝑇𝑦 + min
𝑥≥0

{𝑥𝑇(𝑐 − 𝐴𝑇𝑦)}, dimension of two parts here are (1,1) 

           = 𝑏𝑇𝑦 + min
𝑥≥0

{𝑥𝑇(𝑐 − 𝐴𝑇𝑦)} 

           = {𝑏𝑇𝑦   𝑖𝑓 𝑐 − 𝐴𝑇𝑦 ≥ 0
−∞  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 If 𝑐 − 𝐴𝑇𝑦 < 0, then I can choose 𝑥 arbitrarily such that 𝑔(𝑦) →  −∞ 

 

Weak Duality: 

Suppose 𝑥 is primal feasible (constraints for primal problem satisfied: 𝐴𝑥 = 𝑏, 𝑥 ≥ 0) and (𝑦, 𝑧) is dual feasible 

(constraints for dual problem satisfied: 𝐴𝑇𝑦 + 𝑧 = 𝑐, 𝑧 ≥ 0), then the primal objective is bounded below by the 

dual objective: 

𝑐𝑇𝑥 = (𝐴𝑇𝑦 + 𝑧)𝑥 = 𝑦𝑇𝐴𝑥 + 𝑧𝑇𝑥 = 𝑦𝑇𝑏 + 𝑧𝑇𝑥 ≥ 𝑦𝑇𝑏,   𝑧 ≥ 0 

Weak Duality Theorem: 

If (𝑥, 𝑦, 𝑧) is primal/dual feasible, then for value 𝑝: 



i. the primal value is an upper bound for the dual value. 

ii. the dual value is a lower bound for the primal value. 

 

Complementarity: 

The bound is tight (primal value = dual value) when 𝑥 & 𝑦 are complementary, namely 𝑥𝑇𝑧 = 0: 

𝑥𝑗 = 0  &  𝑧𝑗 ≥ 0   𝑜𝑟  𝑥𝑗 ≥ 0  & 𝑧𝑗 = 0 

 

Optimal Conditions: 

1. Simplex maintains primal feasibility at every iteration: 𝐴𝑥 = 𝑏, 𝑥 ≥ 0 

2. Method defines 𝑦 via 𝐵𝑇𝑦 = 𝑐𝐵, 𝑧 = 𝑐 − 𝐴𝑇𝑦 & maintains complementarity: 𝑥𝐵 ≥ 0 & 𝑧𝐵 = 0 and 𝑥𝑁 =
0 & 𝑧𝑁 > = < 0. 

3. Exit when 𝑧 ≥ 0 such that (𝑦, 𝑧) is dual feasible: 𝐴𝑇𝑦 + 𝑧 = 𝑐, 𝑧 ≥ 0 

 

Strong Duality Theorem: if an LP has an optimal solution, so does it dual, and then optimal values for dual & 

primal problems are equal.  

 

Theorem: the primal-dual triple (𝑥, 𝑦, 𝑧) is optimal iff  

1. Primal Feasible: 𝐴𝑥 = 𝑏, 𝑥 ≥ 0 

2. Dual Feasible: 𝐴𝑇𝑦 + 𝑧 = 𝑐, 𝑧 ≥ 0 

3. Complementarity: 𝑥𝑇𝑧 = 0 

 

Matrix Game: Let matrix 𝐴 denotes to the amounts that 𝑌 pays 𝑋 such that 𝑎𝑖𝑗 represents the specific amount by 𝑋 taking 

strategy 𝑗 & 𝑌 taking strategy 𝑖. 

𝐴 = (

𝑎11 … 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑚1 … 𝑎𝑛𝑚

) , 𝐴 = (𝑚, 𝑛) 

X strategy: Choose 𝑥 subject to 𝑒𝑇𝑥 = 1 𝑂𝑅 ∑ 𝑥𝑗
𝑛
𝑗=1 = 1 

Y strategy: Choose 𝑦 subject to 𝑒𝑇𝑦 = 1 𝑂𝑅 ∑ 𝑦𝑖
𝑚
𝑖=1 = 1 

Total Expected Payoff: 𝑦𝑇𝐴𝑥 =  ∑ ∑ 𝑎𝑖𝑗𝑥𝑗𝑦𝑖
𝑛
𝑗=1

𝑚
𝑖=1  

 

Player 𝑌’s analysis: 

Suppose 𝑌 chooses 𝑦 as his strategy, then 𝑋 will best defend by choosing 𝑥 to maximise the expected payoff: 

max
𝑥

𝑦𝑇𝐴𝑥  𝑠𝑢𝑏𝑗 𝑡𝑜 𝑒𝑇𝑥 = 1, 𝑒𝑇𝑦 = 1 , 𝑦 ≥ 0, 𝑥 ≥ 0 

Then, 𝑌 should choose 𝑦 to protect against the worst possible case when 𝑋 knows what 𝑌 will do: given 𝑦,  

min
𝑦

(max
𝑥

𝑦𝑇𝐴𝑥)   ↔  max
𝑗

(𝑦𝑇𝐴)𝑗 

1. Solving for 𝑌’s strategy: 

i. From LP theory, a basic optimal solution exists implies that 𝑥∗ only has 1 nonzero component = 1. 

(Because there is only 1 equality constraint for inner problem 𝑥) 

ii. Original Problem: min
𝑦

(max
𝑥

𝑦𝑇𝐴𝑥)  𝑠𝑢𝑏𝑗 𝑡𝑜 𝑒𝑇𝑦 = 1, 𝑦 ≥ 0 

iii. Reformulate as an LP: min
𝑦,𝑣

𝑣  𝑠𝑢𝑏𝑗 𝑡𝑜 𝑣𝑒 ≥ 𝐴𝑇𝑦, 𝑒𝑇𝑦 = 1, 𝑦 ≥ 0 

Player 𝑋’s strategy: max
𝑥

(min
𝑦

𝑦𝑇𝐴𝑥)  𝑠𝑢𝑏𝑗 𝑡𝑜 𝑒𝑇𝑥 = 1, 𝑒𝑇𝑦 = 1 , 𝑦 ≥ 0, 𝑥 ≥ 0 

i. Similarly, 𝑦∗ only has 1 nonzero component (=1) 

ii. Reformulated problem: max
𝑥,𝜆

𝜆  𝑠𝑢𝑏𝑗 𝑡𝑜 𝜆𝑒 ≤ 𝐴𝑥 , 𝑒𝑇𝑥 = 1, 𝑥 ≥ 0 

 

MiniMax Theorem: 𝜆 = 𝑣, namely 𝑋’s worst-case expected win = 𝑌’s worst-case expected loss. 

i. X & Y analysis are dual pairs such that their optimal values should be the same (by strong duality). X’s 

the primal problem & Y is the dual problem.  

 

 


