

6. Simplex: $\Delta_n = \{x \in R^n \mid \sum_{i=1}^n x_i \leq 1, k \in N\}$ 7. Unit Simplex: $\overline{\Delta_n} = \{x \in R^n \mid \sum_{i=1}^n x_i = 1, k \in N\}$ Set Operations that Preserve Convexity: 1. intersections of convex sets are convex 2. Additions of Convex sets are convex 3. Image: If $C \in \mathbb{R}^n$ is a convex set & matrix A: (m, n) , then $A(c) = \{Ax | x \in C\}$ is also convex. Convex Functions: A function: $f: C \in \mathbb{R}^n \to \mathbb{R}, C$ is convex, is convex if: $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$ Strict convex: $f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$ Common Convex Functions: 1. Affine/line function: $a^T x + \beta$ for some $\alpha \in R^n, \beta \in R$ (convex & concave) 2. Exponential: e^{ax} for any $a \in R$ 3. Powers: x^a on R_{++} for all $a \ge 1$ or $a \le 0$, Note that when $0 < a < 1$ the function is concave 4. absolute value: $|x|^p, p \ge 1$ 5. Negative entropy: $x \log(x)$ when $x \in R_{++}$ 6. Norms: all the norms are convex; proved using the triangular inequality: $||x + y|| \le ||x|| + ||y||$ Function Operations that Preserve Convexity: 1. Non-negative multiplies. 2. Sum of the convex functions are also convex 3. Composition of convex functions with an affine function is also convex: i.e. $e^{a^T x + \beta}$ Theorems to Prove Convexity of Functions: 1. Let $f: C \to R$ be continuously differentiable over $C \in R^n$, then f is convex iff: $f(x) + \nabla f(x)(z - x) \leq f(z)$, $\forall x, z \in C$ 2. Let $f: C \to R$ be continuously twice differentiable over $C \in R^n$, then f is convex iff: $\nabla_2 f(x) \geq 0 \rightarrow Pos.$ def Convex Optimality: 1. For a convex function, if x^* is a local min, then it's a global min. 2. Unconstraint case: Optimal $\rightarrow \nabla f(x^*) = 0$ 3. Constraint case: $\nabla f(x^*)^T (x - x^*) \geq 0, x \in \mathcal{C}$ (all feasible directions are non-decreasing). i. In other words: $-\nabla f(x^*) \in N_c(x^*)$, $N_c(x^*) = \{ g \in R^n | g^T(z - x) \le 0, z \in C \}$ ii. $\leftrightarrow -\nabla f(x^*) \in Range(A^T)$ Projection $\begin{cases} \text{Projection Theorem: } \text{proj}_c(x) = g(z) = \min_{z \in C} \end{cases}$ 1 $\frac{1}{2}||z-x||^2$ 1. If the objective function is convex then projection is unique. 2. If $x \in C$, then $proj_c(x) = x$ 3. $-\nabla g(z) = -(z - x) = x - z \in N_C(z)$, $N_C(z) = \{ g \in R^n | g^T(c - z) \le 0, z \in C \}$ Projected Gradient Method: 1. start from x_0 2. For $k = 0, 1, ..., n$: i. Choose Step size α_k using one of the three methods above. ii. $x_{k+1} = \text{proj}_c(x_k - \alpha_k * \nabla f(x_k))$ iii. Exit when $||x_k - x_{k+1}|| < \varepsilon$ 3. Return x_{k+1} . Stationarity of Projected Gradient: $x^* \in argmin_{x \in C} f(x)$ with C closed & convex, the $f: R^n \to R$ is convex differentiable if and only if: $x^* = proj_c(x^* - \alpha_k * \nabla f(x^*))$

If (x, y, z) is primal/dual feasible, then for value p:

